3201 lines
103 KiB
C
3201 lines
103 KiB
C
/***************************************************************************/
|
|
/* */
|
|
/* ftraster.c */
|
|
/* */
|
|
/* The FreeType glyph rasterizer (body). */
|
|
/* */
|
|
/* Copyright 1996-2016 by */
|
|
/* David Turner, Robert Wilhelm, and Werner Lemberg. */
|
|
/* */
|
|
/* This file is part of the FreeType project, and may only be used, */
|
|
/* modified, and distributed under the terms of the FreeType project */
|
|
/* license, LICENSE.TXT. By continuing to use, modify, or distribute */
|
|
/* this file you indicate that you have read the license and */
|
|
/* understand and accept it fully. */
|
|
/* */
|
|
/***************************************************************************/
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* This file can be compiled without the rest of the FreeType engine, by */
|
|
/* defining the STANDALONE_ macro when compiling it. You also need to */
|
|
/* put the files `ftimage.h' and `ftmisc.h' into the $(incdir) */
|
|
/* directory. Typically, you should do something like */
|
|
/* */
|
|
/* - copy `src/raster/ftraster.c' (this file) to your current directory */
|
|
/* */
|
|
/* - copy `include/freetype/ftimage.h' and `src/raster/ftmisc.h' to your */
|
|
/* current directory */
|
|
/* */
|
|
/* - compile `ftraster' with the STANDALONE_ macro defined, as in */
|
|
/* */
|
|
/* cc -c -DSTANDALONE_ ftraster.c */
|
|
/* */
|
|
/* The renderer can be initialized with a call to */
|
|
/* `ft_standard_raster.raster_new'; a bitmap can be generated */
|
|
/* with a call to `ft_standard_raster.raster_render'. */
|
|
/* */
|
|
/* See the comments and documentation in the file `ftimage.h' for more */
|
|
/* details on how the raster works. */
|
|
/* */
|
|
/*************************************************************************/
|
|
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* This is a rewrite of the FreeType 1.x scan-line converter */
|
|
/* */
|
|
/*************************************************************************/
|
|
|
|
#ifdef STANDALONE_
|
|
|
|
/* The size in bytes of the render pool used by the scan-line converter */
|
|
/* to do all of its work. */
|
|
#define FT_RENDER_POOL_SIZE 16384L
|
|
|
|
#define FT_CONFIG_STANDARD_LIBRARY_H <stdlib.h>
|
|
|
|
#include <string.h> /* for memset */
|
|
|
|
#include "ftmisc.h"
|
|
#include "ftimage.h"
|
|
|
|
#else /* !STANDALONE_ */
|
|
|
|
#include <ft2build.h>
|
|
#include "ftraster.h"
|
|
#include FT_INTERNAL_CALC_H /* for FT_MulDiv and FT_MulDiv_No_Round */
|
|
|
|
#include "rastpic.h"
|
|
|
|
#endif /* !STANDALONE_ */
|
|
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* A simple technical note on how the raster works */
|
|
/* ----------------------------------------------- */
|
|
/* */
|
|
/* Converting an outline into a bitmap is achieved in several steps: */
|
|
/* */
|
|
/* 1 - Decomposing the outline into successive `profiles'. Each */
|
|
/* profile is simply an array of scanline intersections on a given */
|
|
/* dimension. A profile's main attributes are */
|
|
/* */
|
|
/* o its scanline position boundaries, i.e. `Ymin' and `Ymax' */
|
|
/* */
|
|
/* o an array of intersection coordinates for each scanline */
|
|
/* between `Ymin' and `Ymax' */
|
|
/* */
|
|
/* o a direction, indicating whether it was built going `up' or */
|
|
/* `down', as this is very important for filling rules */
|
|
/* */
|
|
/* o its drop-out mode */
|
|
/* */
|
|
/* 2 - Sweeping the target map's scanlines in order to compute segment */
|
|
/* `spans' which are then filled. Additionally, this pass */
|
|
/* performs drop-out control. */
|
|
/* */
|
|
/* The outline data is parsed during step 1 only. The profiles are */
|
|
/* built from the bottom of the render pool, used as a stack. The */
|
|
/* following graphics shows the profile list under construction: */
|
|
/* */
|
|
/* __________________________________________________________ _ _ */
|
|
/* | | | | | */
|
|
/* | profile | coordinates for | profile | coordinates for |--> */
|
|
/* | 1 | profile 1 | 2 | profile 2 |--> */
|
|
/* |_________|_________________|_________|_________________|__ _ _ */
|
|
/* */
|
|
/* ^ ^ */
|
|
/* | | */
|
|
/* start of render pool top */
|
|
/* */
|
|
/* The top of the profile stack is kept in the `top' variable. */
|
|
/* */
|
|
/* As you can see, a profile record is pushed on top of the render */
|
|
/* pool, which is then followed by its coordinates/intersections. If */
|
|
/* a change of direction is detected in the outline, a new profile is */
|
|
/* generated until the end of the outline. */
|
|
/* */
|
|
/* Note that when all profiles have been generated, the function */
|
|
/* Finalize_Profile_Table() is used to record, for each profile, its */
|
|
/* bottom-most scanline as well as the scanline above its upmost */
|
|
/* boundary. These positions are called `y-turns' because they (sort */
|
|
/* of) correspond to local extrema. They are stored in a sorted list */
|
|
/* built from the top of the render pool as a downwards stack: */
|
|
/* */
|
|
/* _ _ _______________________________________ */
|
|
/* | | */
|
|
/* <--| sorted list of | */
|
|
/* <--| extrema scanlines | */
|
|
/* _ _ __________________|____________________| */
|
|
/* */
|
|
/* ^ ^ */
|
|
/* | | */
|
|
/* maxBuff sizeBuff = end of pool */
|
|
/* */
|
|
/* This list is later used during the sweep phase in order to */
|
|
/* optimize performance (see technical note on the sweep below). */
|
|
/* */
|
|
/* Of course, the raster detects whether the two stacks collide and */
|
|
/* handles the situation properly. */
|
|
/* */
|
|
/*************************************************************************/
|
|
|
|
|
|
/*************************************************************************/
|
|
/*************************************************************************/
|
|
/** **/
|
|
/** CONFIGURATION MACROS **/
|
|
/** **/
|
|
/*************************************************************************/
|
|
/*************************************************************************/
|
|
|
|
/* define DEBUG_RASTER if you want to compile a debugging version */
|
|
/* #define DEBUG_RASTER */
|
|
|
|
|
|
/*************************************************************************/
|
|
/*************************************************************************/
|
|
/** **/
|
|
/** OTHER MACROS (do not change) **/
|
|
/** **/
|
|
/*************************************************************************/
|
|
/*************************************************************************/
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* The macro FT_COMPONENT is used in trace mode. It is an implicit */
|
|
/* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log */
|
|
/* messages during execution. */
|
|
/* */
|
|
#undef FT_COMPONENT
|
|
#define FT_COMPONENT trace_raster
|
|
|
|
|
|
#ifdef STANDALONE_
|
|
|
|
/* Auxiliary macros for token concatenation. */
|
|
#define FT_ERR_XCAT( x, y ) x ## y
|
|
#define FT_ERR_CAT( x, y ) FT_ERR_XCAT( x, y )
|
|
|
|
#define FT_MAX( a, b ) ( (a) > (b) ? (a) : (b) )
|
|
|
|
/* This macro is used to indicate that a function parameter is unused. */
|
|
/* Its purpose is simply to reduce compiler warnings. Note also that */
|
|
/* simply defining it as `(void)x' doesn't avoid warnings with certain */
|
|
/* ANSI compilers (e.g. LCC). */
|
|
#define FT_UNUSED( x ) (x) = (x)
|
|
|
|
/* Disable the tracing mechanism for simplicity -- developers can */
|
|
/* activate it easily by redefining these macros. */
|
|
#ifndef FT_ERROR
|
|
#define FT_ERROR( x ) do { } while ( 0 ) /* nothing */
|
|
#endif
|
|
|
|
#ifndef FT_TRACE
|
|
#define FT_TRACE( x ) do { } while ( 0 ) /* nothing */
|
|
#define FT_TRACE1( x ) do { } while ( 0 ) /* nothing */
|
|
#define FT_TRACE6( x ) do { } while ( 0 ) /* nothing */
|
|
#define FT_TRACE7( x ) do { } while ( 0 ) /* nothing */
|
|
#endif
|
|
|
|
#ifndef FT_THROW
|
|
#define FT_THROW( e ) FT_ERR_CAT( Raster_Err_, e )
|
|
#endif
|
|
|
|
#define Raster_Err_None 0
|
|
#define Raster_Err_Not_Ini -1
|
|
#define Raster_Err_Overflow -2
|
|
#define Raster_Err_Neg_Height -3
|
|
#define Raster_Err_Invalid -4
|
|
#define Raster_Err_Unsupported -5
|
|
|
|
#define ft_memset memset
|
|
|
|
#define FT_DEFINE_RASTER_FUNCS( class_, glyph_format_, raster_new_, \
|
|
raster_reset_, raster_set_mode_, \
|
|
raster_render_, raster_done_ ) \
|
|
const FT_Raster_Funcs class_ = \
|
|
{ \
|
|
glyph_format_, \
|
|
raster_new_, \
|
|
raster_reset_, \
|
|
raster_set_mode_, \
|
|
raster_render_, \
|
|
raster_done_ \
|
|
};
|
|
|
|
#else /* !STANDALONE_ */
|
|
|
|
|
|
#include FT_INTERNAL_OBJECTS_H
|
|
#include FT_INTERNAL_DEBUG_H /* for FT_TRACE, FT_ERROR, and FT_THROW */
|
|
|
|
#include "rasterrs.h"
|
|
|
|
#define Raster_Err_None FT_Err_Ok
|
|
#define Raster_Err_Not_Ini Raster_Err_Raster_Uninitialized
|
|
#define Raster_Err_Overflow Raster_Err_Raster_Overflow
|
|
#define Raster_Err_Neg_Height Raster_Err_Raster_Negative_Height
|
|
#define Raster_Err_Invalid Raster_Err_Invalid_Outline
|
|
#define Raster_Err_Unsupported Raster_Err_Cannot_Render_Glyph
|
|
|
|
|
|
#endif /* !STANDALONE_ */
|
|
|
|
|
|
#ifndef FT_MEM_SET
|
|
#define FT_MEM_SET( d, s, c ) ft_memset( d, s, c )
|
|
#endif
|
|
|
|
#ifndef FT_MEM_ZERO
|
|
#define FT_MEM_ZERO( dest, count ) FT_MEM_SET( dest, 0, count )
|
|
#endif
|
|
|
|
/* FMulDiv means `Fast MulDiv'; it is used in case where `b' is */
|
|
/* typically a small value and the result of a*b is known to fit into */
|
|
/* 32 bits. */
|
|
#define FMulDiv( a, b, c ) ( (a) * (b) / (c) )
|
|
|
|
/* On the other hand, SMulDiv means `Slow MulDiv', and is used typically */
|
|
/* for clipping computations. It simply uses the FT_MulDiv() function */
|
|
/* defined in `ftcalc.h'. */
|
|
#define SMulDiv FT_MulDiv
|
|
#define SMulDiv_No_Round FT_MulDiv_No_Round
|
|
|
|
/* The rasterizer is a very general purpose component; please leave */
|
|
/* the following redefinitions there (you never know your target */
|
|
/* environment). */
|
|
|
|
#ifndef TRUE
|
|
#define TRUE 1
|
|
#endif
|
|
|
|
#ifndef FALSE
|
|
#define FALSE 0
|
|
#endif
|
|
|
|
#ifndef NULL
|
|
#define NULL (void*)0
|
|
#endif
|
|
|
|
#ifndef SUCCESS
|
|
#define SUCCESS 0
|
|
#endif
|
|
|
|
#ifndef FAILURE
|
|
#define FAILURE 1
|
|
#endif
|
|
|
|
|
|
#define MaxBezier 32 /* The maximum number of stacked Bezier curves. */
|
|
/* Setting this constant to more than 32 is a */
|
|
/* pure waste of space. */
|
|
|
|
#define Pixel_Bits 6 /* fractional bits of *input* coordinates */
|
|
|
|
|
|
/*************************************************************************/
|
|
/*************************************************************************/
|
|
/** **/
|
|
/** SIMPLE TYPE DECLARATIONS **/
|
|
/** **/
|
|
/*************************************************************************/
|
|
/*************************************************************************/
|
|
|
|
typedef int Int;
|
|
typedef unsigned int UInt;
|
|
typedef short Short;
|
|
typedef unsigned short UShort, *PUShort;
|
|
typedef long Long, *PLong;
|
|
typedef unsigned long ULong;
|
|
|
|
typedef unsigned char Byte, *PByte;
|
|
typedef char Bool;
|
|
|
|
|
|
typedef union Alignment_
|
|
{
|
|
Long l;
|
|
void* p;
|
|
void (*f)(void);
|
|
|
|
} Alignment, *PAlignment;
|
|
|
|
|
|
typedef struct TPoint_
|
|
{
|
|
Long x;
|
|
Long y;
|
|
|
|
} TPoint;
|
|
|
|
|
|
/* values for the `flags' bit field */
|
|
#define Flow_Up 0x08U
|
|
#define Overshoot_Top 0x10U
|
|
#define Overshoot_Bottom 0x20U
|
|
|
|
|
|
/* States of each line, arc, and profile */
|
|
typedef enum TStates_
|
|
{
|
|
Unknown_State,
|
|
Ascending_State,
|
|
Descending_State,
|
|
Flat_State
|
|
|
|
} TStates;
|
|
|
|
|
|
typedef struct TProfile_ TProfile;
|
|
typedef TProfile* PProfile;
|
|
|
|
struct TProfile_
|
|
{
|
|
FT_F26Dot6 X; /* current coordinate during sweep */
|
|
PProfile link; /* link to next profile (various purposes) */
|
|
PLong offset; /* start of profile's data in render pool */
|
|
UShort flags; /* Bit 0-2: drop-out mode */
|
|
/* Bit 3: profile orientation (up/down) */
|
|
/* Bit 4: is top profile? */
|
|
/* Bit 5: is bottom profile? */
|
|
Long height; /* profile's height in scanlines */
|
|
Long start; /* profile's starting scanline */
|
|
|
|
Int countL; /* number of lines to step before this */
|
|
/* profile becomes drawable */
|
|
|
|
PProfile next; /* next profile in same contour, used */
|
|
/* during drop-out control */
|
|
};
|
|
|
|
typedef PProfile TProfileList;
|
|
typedef PProfile* PProfileList;
|
|
|
|
|
|
/* Simple record used to implement a stack of bands, required */
|
|
/* by the sub-banding mechanism */
|
|
typedef struct black_TBand_
|
|
{
|
|
Short y_min; /* band's minimum */
|
|
Short y_max; /* band's maximum */
|
|
|
|
} black_TBand;
|
|
|
|
|
|
#define AlignProfileSize \
|
|
( ( sizeof ( TProfile ) + sizeof ( Alignment ) - 1 ) / sizeof ( Long ) )
|
|
|
|
|
|
#undef RAS_ARG
|
|
#undef RAS_ARGS
|
|
#undef RAS_VAR
|
|
#undef RAS_VARS
|
|
|
|
#ifdef FT_STATIC_RASTER
|
|
|
|
|
|
#define RAS_ARGS /* void */
|
|
#define RAS_ARG /* void */
|
|
|
|
#define RAS_VARS /* void */
|
|
#define RAS_VAR /* void */
|
|
|
|
#define FT_UNUSED_RASTER do { } while ( 0 )
|
|
|
|
|
|
#else /* !FT_STATIC_RASTER */
|
|
|
|
|
|
#define RAS_ARGS black_PWorker worker,
|
|
#define RAS_ARG black_PWorker worker
|
|
|
|
#define RAS_VARS worker,
|
|
#define RAS_VAR worker
|
|
|
|
#define FT_UNUSED_RASTER FT_UNUSED( worker )
|
|
|
|
|
|
#endif /* !FT_STATIC_RASTER */
|
|
|
|
|
|
typedef struct black_TWorker_ black_TWorker, *black_PWorker;
|
|
|
|
|
|
/* prototypes used for sweep function dispatch */
|
|
typedef void
|
|
Function_Sweep_Init( RAS_ARGS Short* min,
|
|
Short* max );
|
|
|
|
typedef void
|
|
Function_Sweep_Span( RAS_ARGS Short y,
|
|
FT_F26Dot6 x1,
|
|
FT_F26Dot6 x2,
|
|
PProfile left,
|
|
PProfile right );
|
|
|
|
typedef void
|
|
Function_Sweep_Step( RAS_ARG );
|
|
|
|
|
|
/* NOTE: These operations are only valid on 2's complement processors */
|
|
#undef FLOOR
|
|
#undef CEILING
|
|
#undef TRUNC
|
|
#undef SCALED
|
|
|
|
#define FLOOR( x ) ( (x) & -ras.precision )
|
|
#define CEILING( x ) ( ( (x) + ras.precision - 1 ) & -ras.precision )
|
|
#define TRUNC( x ) ( (Long)(x) >> ras.precision_bits )
|
|
#define FRAC( x ) ( (x) & ( ras.precision - 1 ) )
|
|
#define SCALED( x ) ( ( (x) < 0 ? -( -(x) << ras.scale_shift ) \
|
|
: ( (x) << ras.scale_shift ) ) \
|
|
- ras.precision_half )
|
|
|
|
#define IS_BOTTOM_OVERSHOOT( x ) \
|
|
(Bool)( CEILING( x ) - x >= ras.precision_half )
|
|
#define IS_TOP_OVERSHOOT( x ) \
|
|
(Bool)( x - FLOOR( x ) >= ras.precision_half )
|
|
|
|
/* The most used variables are positioned at the top of the structure. */
|
|
/* Thus, their offset can be coded with less opcodes, resulting in a */
|
|
/* smaller executable. */
|
|
|
|
struct black_TWorker_
|
|
{
|
|
Int precision_bits; /* precision related variables */
|
|
Int precision;
|
|
Int precision_half;
|
|
Int precision_shift;
|
|
Int precision_step;
|
|
Int precision_jitter;
|
|
|
|
Int scale_shift; /* == precision_shift for bitmaps */
|
|
/* == precision_shift+1 for pixmaps */
|
|
|
|
PLong buff; /* The profiles buffer */
|
|
PLong sizeBuff; /* Render pool size */
|
|
PLong maxBuff; /* Profiles buffer size */
|
|
PLong top; /* Current cursor in buffer */
|
|
|
|
FT_Error error;
|
|
|
|
Int numTurns; /* number of Y-turns in outline */
|
|
|
|
TPoint* arc; /* current Bezier arc pointer */
|
|
|
|
UShort bWidth; /* target bitmap width */
|
|
PByte bTarget; /* target bitmap buffer */
|
|
PByte gTarget; /* target pixmap buffer */
|
|
|
|
Long lastX, lastY;
|
|
Long minY, maxY;
|
|
|
|
UShort num_Profs; /* current number of profiles */
|
|
|
|
Bool fresh; /* signals a fresh new profile which */
|
|
/* `start' field must be completed */
|
|
Bool joint; /* signals that the last arc ended */
|
|
/* exactly on a scanline. Allows */
|
|
/* removal of doublets */
|
|
PProfile cProfile; /* current profile */
|
|
PProfile fProfile; /* head of linked list of profiles */
|
|
PProfile gProfile; /* contour's first profile in case */
|
|
/* of impact */
|
|
|
|
TStates state; /* rendering state */
|
|
|
|
FT_Bitmap target; /* description of target bit/pixmap */
|
|
FT_Outline outline;
|
|
|
|
Long traceOfs; /* current offset in target bitmap */
|
|
Long traceG; /* current offset in target pixmap */
|
|
|
|
Short traceIncr; /* sweep's increment in target bitmap */
|
|
|
|
/* dispatch variables */
|
|
|
|
Function_Sweep_Init* Proc_Sweep_Init;
|
|
Function_Sweep_Span* Proc_Sweep_Span;
|
|
Function_Sweep_Span* Proc_Sweep_Drop;
|
|
Function_Sweep_Step* Proc_Sweep_Step;
|
|
|
|
Byte dropOutControl; /* current drop_out control method */
|
|
|
|
Bool second_pass; /* indicates whether a horizontal pass */
|
|
/* should be performed to control */
|
|
/* drop-out accurately when calling */
|
|
/* Render_Glyph. */
|
|
|
|
TPoint arcs[3 * MaxBezier + 1]; /* The Bezier stack */
|
|
|
|
black_TBand band_stack[16]; /* band stack used for sub-banding */
|
|
Int band_top; /* band stack top */
|
|
|
|
};
|
|
|
|
|
|
typedef struct black_TRaster_
|
|
{
|
|
void* memory;
|
|
|
|
} black_TRaster, *black_PRaster;
|
|
|
|
#ifdef FT_STATIC_RASTER
|
|
|
|
static black_TWorker cur_ras;
|
|
#define ras cur_ras
|
|
|
|
#else /* !FT_STATIC_RASTER */
|
|
|
|
#define ras (*worker)
|
|
|
|
#endif /* !FT_STATIC_RASTER */
|
|
|
|
|
|
/*************************************************************************/
|
|
/*************************************************************************/
|
|
/** **/
|
|
/** PROFILES COMPUTATION **/
|
|
/** **/
|
|
/*************************************************************************/
|
|
/*************************************************************************/
|
|
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* <Function> */
|
|
/* Set_High_Precision */
|
|
/* */
|
|
/* <Description> */
|
|
/* Set precision variables according to param flag. */
|
|
/* */
|
|
/* <Input> */
|
|
/* High :: Set to True for high precision (typically for ppem < 24), */
|
|
/* false otherwise. */
|
|
/* */
|
|
static void
|
|
Set_High_Precision( RAS_ARGS Int High )
|
|
{
|
|
/*
|
|
* `precision_step' is used in `Bezier_Up' to decide when to split a
|
|
* given y-monotonous Bezier arc that crosses a scanline before
|
|
* approximating it as a straight segment. The default value of 32 (for
|
|
* low accuracy) corresponds to
|
|
*
|
|
* 32 / 64 == 0.5 pixels,
|
|
*
|
|
* while for the high accuracy case we have
|
|
*
|
|
* 256 / (1 << 12) = 0.0625 pixels.
|
|
*
|
|
* `precision_jitter' is an epsilon threshold used in
|
|
* `Vertical_Sweep_Span' to deal with small imperfections in the Bezier
|
|
* decomposition (after all, we are working with approximations only);
|
|
* it avoids switching on additional pixels which would cause artifacts
|
|
* otherwise.
|
|
*
|
|
* The value of `precision_jitter' has been determined heuristically.
|
|
*
|
|
*/
|
|
|
|
if ( High )
|
|
{
|
|
ras.precision_bits = 12;
|
|
ras.precision_step = 256;
|
|
ras.precision_jitter = 30;
|
|
}
|
|
else
|
|
{
|
|
ras.precision_bits = 6;
|
|
ras.precision_step = 32;
|
|
ras.precision_jitter = 2;
|
|
}
|
|
|
|
FT_TRACE6(( "Set_High_Precision(%s)\n", High ? "true" : "false" ));
|
|
|
|
ras.precision = 1 << ras.precision_bits;
|
|
ras.precision_half = ras.precision / 2;
|
|
ras.precision_shift = ras.precision_bits - Pixel_Bits;
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* <Function> */
|
|
/* New_Profile */
|
|
/* */
|
|
/* <Description> */
|
|
/* Create a new profile in the render pool. */
|
|
/* */
|
|
/* <Input> */
|
|
/* aState :: The state/orientation of the new profile. */
|
|
/* */
|
|
/* overshoot :: Whether the profile's unrounded start position */
|
|
/* differs by at least a half pixel. */
|
|
/* */
|
|
/* <Return> */
|
|
/* SUCCESS on success. FAILURE in case of overflow or of incoherent */
|
|
/* profile. */
|
|
/* */
|
|
static Bool
|
|
New_Profile( RAS_ARGS TStates aState,
|
|
Bool overshoot )
|
|
{
|
|
if ( !ras.fProfile )
|
|
{
|
|
ras.cProfile = (PProfile)ras.top;
|
|
ras.fProfile = ras.cProfile;
|
|
ras.top += AlignProfileSize;
|
|
}
|
|
|
|
if ( ras.top >= ras.maxBuff )
|
|
{
|
|
ras.error = FT_THROW( Overflow );
|
|
return FAILURE;
|
|
}
|
|
|
|
ras.cProfile->flags = 0;
|
|
ras.cProfile->start = 0;
|
|
ras.cProfile->height = 0;
|
|
ras.cProfile->offset = ras.top;
|
|
ras.cProfile->link = (PProfile)0;
|
|
ras.cProfile->next = (PProfile)0;
|
|
ras.cProfile->flags = ras.dropOutControl;
|
|
|
|
switch ( aState )
|
|
{
|
|
case Ascending_State:
|
|
ras.cProfile->flags |= Flow_Up;
|
|
if ( overshoot )
|
|
ras.cProfile->flags |= Overshoot_Bottom;
|
|
|
|
FT_TRACE6(( " new ascending profile = %p\n", ras.cProfile ));
|
|
break;
|
|
|
|
case Descending_State:
|
|
if ( overshoot )
|
|
ras.cProfile->flags |= Overshoot_Top;
|
|
FT_TRACE6(( " new descending profile = %p\n", ras.cProfile ));
|
|
break;
|
|
|
|
default:
|
|
FT_ERROR(( "New_Profile: invalid profile direction\n" ));
|
|
ras.error = FT_THROW( Invalid );
|
|
return FAILURE;
|
|
}
|
|
|
|
if ( !ras.gProfile )
|
|
ras.gProfile = ras.cProfile;
|
|
|
|
ras.state = aState;
|
|
ras.fresh = TRUE;
|
|
ras.joint = FALSE;
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* <Function> */
|
|
/* End_Profile */
|
|
/* */
|
|
/* <Description> */
|
|
/* Finalize the current profile. */
|
|
/* */
|
|
/* <Input> */
|
|
/* overshoot :: Whether the profile's unrounded end position differs */
|
|
/* by at least a half pixel. */
|
|
/* */
|
|
/* <Return> */
|
|
/* SUCCESS on success. FAILURE in case of overflow or incoherency. */
|
|
/* */
|
|
static Bool
|
|
End_Profile( RAS_ARGS Bool overshoot )
|
|
{
|
|
Long h;
|
|
|
|
|
|
h = (Long)( ras.top - ras.cProfile->offset );
|
|
|
|
if ( h < 0 )
|
|
{
|
|
FT_ERROR(( "End_Profile: negative height encountered\n" ));
|
|
ras.error = FT_THROW( Neg_Height );
|
|
return FAILURE;
|
|
}
|
|
|
|
if ( h > 0 )
|
|
{
|
|
PProfile oldProfile;
|
|
|
|
|
|
FT_TRACE6(( " ending profile %p, start = %ld, height = %ld\n",
|
|
ras.cProfile, ras.cProfile->start, h ));
|
|
|
|
ras.cProfile->height = h;
|
|
if ( overshoot )
|
|
{
|
|
if ( ras.cProfile->flags & Flow_Up )
|
|
ras.cProfile->flags |= Overshoot_Top;
|
|
else
|
|
ras.cProfile->flags |= Overshoot_Bottom;
|
|
}
|
|
|
|
oldProfile = ras.cProfile;
|
|
ras.cProfile = (PProfile)ras.top;
|
|
|
|
ras.top += AlignProfileSize;
|
|
|
|
ras.cProfile->height = 0;
|
|
ras.cProfile->offset = ras.top;
|
|
|
|
oldProfile->next = ras.cProfile;
|
|
ras.num_Profs++;
|
|
}
|
|
|
|
if ( ras.top >= ras.maxBuff )
|
|
{
|
|
FT_TRACE1(( "overflow in End_Profile\n" ));
|
|
ras.error = FT_THROW( Overflow );
|
|
return FAILURE;
|
|
}
|
|
|
|
ras.joint = FALSE;
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* <Function> */
|
|
/* Insert_Y_Turn */
|
|
/* */
|
|
/* <Description> */
|
|
/* Insert a salient into the sorted list placed on top of the render */
|
|
/* pool. */
|
|
/* */
|
|
/* <Input> */
|
|
/* New y scanline position. */
|
|
/* */
|
|
/* <Return> */
|
|
/* SUCCESS on success. FAILURE in case of overflow. */
|
|
/* */
|
|
static Bool
|
|
Insert_Y_Turn( RAS_ARGS Int y )
|
|
{
|
|
PLong y_turns;
|
|
Int n;
|
|
|
|
|
|
n = ras.numTurns - 1;
|
|
y_turns = ras.sizeBuff - ras.numTurns;
|
|
|
|
/* look for first y value that is <= */
|
|
while ( n >= 0 && y < y_turns[n] )
|
|
n--;
|
|
|
|
/* if it is <, simply insert it, ignore if == */
|
|
if ( n >= 0 && y > y_turns[n] )
|
|
do
|
|
{
|
|
Int y2 = (Int)y_turns[n];
|
|
|
|
|
|
y_turns[n] = y;
|
|
y = y2;
|
|
} while ( --n >= 0 );
|
|
|
|
if ( n < 0 )
|
|
{
|
|
ras.maxBuff--;
|
|
if ( ras.maxBuff <= ras.top )
|
|
{
|
|
ras.error = FT_THROW( Overflow );
|
|
return FAILURE;
|
|
}
|
|
ras.numTurns++;
|
|
ras.sizeBuff[-ras.numTurns] = y;
|
|
}
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* <Function> */
|
|
/* Finalize_Profile_Table */
|
|
/* */
|
|
/* <Description> */
|
|
/* Adjust all links in the profiles list. */
|
|
/* */
|
|
/* <Return> */
|
|
/* SUCCESS on success. FAILURE in case of overflow. */
|
|
/* */
|
|
static Bool
|
|
Finalize_Profile_Table( RAS_ARG )
|
|
{
|
|
UShort n;
|
|
PProfile p;
|
|
|
|
|
|
n = ras.num_Profs;
|
|
p = ras.fProfile;
|
|
|
|
if ( n > 1 && p )
|
|
{
|
|
do
|
|
{
|
|
Int bottom, top;
|
|
|
|
|
|
if ( n > 1 )
|
|
p->link = (PProfile)( p->offset + p->height );
|
|
else
|
|
p->link = NULL;
|
|
|
|
if ( p->flags & Flow_Up )
|
|
{
|
|
bottom = (Int)p->start;
|
|
top = (Int)( p->start + p->height - 1 );
|
|
}
|
|
else
|
|
{
|
|
bottom = (Int)( p->start - p->height + 1 );
|
|
top = (Int)p->start;
|
|
p->start = bottom;
|
|
p->offset += p->height - 1;
|
|
}
|
|
|
|
if ( Insert_Y_Turn( RAS_VARS bottom ) ||
|
|
Insert_Y_Turn( RAS_VARS top + 1 ) )
|
|
return FAILURE;
|
|
|
|
p = p->link;
|
|
} while ( --n );
|
|
}
|
|
else
|
|
ras.fProfile = NULL;
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* <Function> */
|
|
/* Split_Conic */
|
|
/* */
|
|
/* <Description> */
|
|
/* Subdivide one conic Bezier into two joint sub-arcs in the Bezier */
|
|
/* stack. */
|
|
/* */
|
|
/* <Input> */
|
|
/* None (subdivided Bezier is taken from the top of the stack). */
|
|
/* */
|
|
/* <Note> */
|
|
/* This routine is the `beef' of this component. It is _the_ inner */
|
|
/* loop that should be optimized to hell to get the best performance. */
|
|
/* */
|
|
static void
|
|
Split_Conic( TPoint* base )
|
|
{
|
|
Long a, b;
|
|
|
|
|
|
base[4].x = base[2].x;
|
|
b = base[1].x;
|
|
a = base[3].x = ( base[2].x + b ) / 2;
|
|
b = base[1].x = ( base[0].x + b ) / 2;
|
|
base[2].x = ( a + b ) / 2;
|
|
|
|
base[4].y = base[2].y;
|
|
b = base[1].y;
|
|
a = base[3].y = ( base[2].y + b ) / 2;
|
|
b = base[1].y = ( base[0].y + b ) / 2;
|
|
base[2].y = ( a + b ) / 2;
|
|
|
|
/* hand optimized. gcc doesn't seem to be too good at common */
|
|
/* expression substitution and instruction scheduling ;-) */
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* <Function> */
|
|
/* Split_Cubic */
|
|
/* */
|
|
/* <Description> */
|
|
/* Subdivide a third-order Bezier arc into two joint sub-arcs in the */
|
|
/* Bezier stack. */
|
|
/* */
|
|
/* <Note> */
|
|
/* This routine is the `beef' of the component. It is one of _the_ */
|
|
/* inner loops that should be optimized like hell to get the best */
|
|
/* performance. */
|
|
/* */
|
|
static void
|
|
Split_Cubic( TPoint* base )
|
|
{
|
|
Long a, b, c, d;
|
|
|
|
|
|
base[6].x = base[3].x;
|
|
c = base[1].x;
|
|
d = base[2].x;
|
|
base[1].x = a = ( base[0].x + c + 1 ) >> 1;
|
|
base[5].x = b = ( base[3].x + d + 1 ) >> 1;
|
|
c = ( c + d + 1 ) >> 1;
|
|
base[2].x = a = ( a + c + 1 ) >> 1;
|
|
base[4].x = b = ( b + c + 1 ) >> 1;
|
|
base[3].x = ( a + b + 1 ) >> 1;
|
|
|
|
base[6].y = base[3].y;
|
|
c = base[1].y;
|
|
d = base[2].y;
|
|
base[1].y = a = ( base[0].y + c + 1 ) >> 1;
|
|
base[5].y = b = ( base[3].y + d + 1 ) >> 1;
|
|
c = ( c + d + 1 ) >> 1;
|
|
base[2].y = a = ( a + c + 1 ) >> 1;
|
|
base[4].y = b = ( b + c + 1 ) >> 1;
|
|
base[3].y = ( a + b + 1 ) >> 1;
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* <Function> */
|
|
/* Line_Up */
|
|
/* */
|
|
/* <Description> */
|
|
/* Compute the x-coordinates of an ascending line segment and store */
|
|
/* them in the render pool. */
|
|
/* */
|
|
/* <Input> */
|
|
/* x1 :: The x-coordinate of the segment's start point. */
|
|
/* */
|
|
/* y1 :: The y-coordinate of the segment's start point. */
|
|
/* */
|
|
/* x2 :: The x-coordinate of the segment's end point. */
|
|
/* */
|
|
/* y2 :: The y-coordinate of the segment's end point. */
|
|
/* */
|
|
/* miny :: A lower vertical clipping bound value. */
|
|
/* */
|
|
/* maxy :: An upper vertical clipping bound value. */
|
|
/* */
|
|
/* <Return> */
|
|
/* SUCCESS on success, FAILURE on render pool overflow. */
|
|
/* */
|
|
static Bool
|
|
Line_Up( RAS_ARGS Long x1,
|
|
Long y1,
|
|
Long x2,
|
|
Long y2,
|
|
Long miny,
|
|
Long maxy )
|
|
{
|
|
Long Dx, Dy;
|
|
Int e1, e2, f1, f2, size; /* XXX: is `Short' sufficient? */
|
|
Long Ix, Rx, Ax;
|
|
|
|
PLong top;
|
|
|
|
|
|
Dx = x2 - x1;
|
|
Dy = y2 - y1;
|
|
|
|
if ( Dy <= 0 || y2 < miny || y1 > maxy )
|
|
return SUCCESS;
|
|
|
|
if ( y1 < miny )
|
|
{
|
|
/* Take care: miny-y1 can be a very large value; we use */
|
|
/* a slow MulDiv function to avoid clipping bugs */
|
|
x1 += SMulDiv( Dx, miny - y1, Dy );
|
|
e1 = (Int)TRUNC( miny );
|
|
f1 = 0;
|
|
}
|
|
else
|
|
{
|
|
e1 = (Int)TRUNC( y1 );
|
|
f1 = (Int)FRAC( y1 );
|
|
}
|
|
|
|
if ( y2 > maxy )
|
|
{
|
|
/* x2 += FMulDiv( Dx, maxy - y2, Dy ); UNNECESSARY */
|
|
e2 = (Int)TRUNC( maxy );
|
|
f2 = 0;
|
|
}
|
|
else
|
|
{
|
|
e2 = (Int)TRUNC( y2 );
|
|
f2 = (Int)FRAC( y2 );
|
|
}
|
|
|
|
if ( f1 > 0 )
|
|
{
|
|
if ( e1 == e2 )
|
|
return SUCCESS;
|
|
else
|
|
{
|
|
x1 += SMulDiv( Dx, ras.precision - f1, Dy );
|
|
e1 += 1;
|
|
}
|
|
}
|
|
else
|
|
if ( ras.joint )
|
|
{
|
|
ras.top--;
|
|
ras.joint = FALSE;
|
|
}
|
|
|
|
ras.joint = (char)( f2 == 0 );
|
|
|
|
if ( ras.fresh )
|
|
{
|
|
ras.cProfile->start = e1;
|
|
ras.fresh = FALSE;
|
|
}
|
|
|
|
size = e2 - e1 + 1;
|
|
if ( ras.top + size >= ras.maxBuff )
|
|
{
|
|
ras.error = FT_THROW( Overflow );
|
|
return FAILURE;
|
|
}
|
|
|
|
if ( Dx > 0 )
|
|
{
|
|
Ix = SMulDiv_No_Round( ras.precision, Dx, Dy );
|
|
Rx = ( ras.precision * Dx ) % Dy;
|
|
Dx = 1;
|
|
}
|
|
else
|
|
{
|
|
Ix = -SMulDiv_No_Round( ras.precision, -Dx, Dy );
|
|
Rx = ( ras.precision * -Dx ) % Dy;
|
|
Dx = -1;
|
|
}
|
|
|
|
Ax = -Dy;
|
|
top = ras.top;
|
|
|
|
while ( size > 0 )
|
|
{
|
|
*top++ = x1;
|
|
|
|
x1 += Ix;
|
|
Ax += Rx;
|
|
if ( Ax >= 0 )
|
|
{
|
|
Ax -= Dy;
|
|
x1 += Dx;
|
|
}
|
|
size--;
|
|
}
|
|
|
|
ras.top = top;
|
|
return SUCCESS;
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* <Function> */
|
|
/* Line_Down */
|
|
/* */
|
|
/* <Description> */
|
|
/* Compute the x-coordinates of an descending line segment and store */
|
|
/* them in the render pool. */
|
|
/* */
|
|
/* <Input> */
|
|
/* x1 :: The x-coordinate of the segment's start point. */
|
|
/* */
|
|
/* y1 :: The y-coordinate of the segment's start point. */
|
|
/* */
|
|
/* x2 :: The x-coordinate of the segment's end point. */
|
|
/* */
|
|
/* y2 :: The y-coordinate of the segment's end point. */
|
|
/* */
|
|
/* miny :: A lower vertical clipping bound value. */
|
|
/* */
|
|
/* maxy :: An upper vertical clipping bound value. */
|
|
/* */
|
|
/* <Return> */
|
|
/* SUCCESS on success, FAILURE on render pool overflow. */
|
|
/* */
|
|
static Bool
|
|
Line_Down( RAS_ARGS Long x1,
|
|
Long y1,
|
|
Long x2,
|
|
Long y2,
|
|
Long miny,
|
|
Long maxy )
|
|
{
|
|
Bool result, fresh;
|
|
|
|
|
|
fresh = ras.fresh;
|
|
|
|
result = Line_Up( RAS_VARS x1, -y1, x2, -y2, -maxy, -miny );
|
|
|
|
if ( fresh && !ras.fresh )
|
|
ras.cProfile->start = -ras.cProfile->start;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/* A function type describing the functions used to split Bezier arcs */
|
|
typedef void (*TSplitter)( TPoint* base );
|
|
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* <Function> */
|
|
/* Bezier_Up */
|
|
/* */
|
|
/* <Description> */
|
|
/* Compute the x-coordinates of an ascending Bezier arc and store */
|
|
/* them in the render pool. */
|
|
/* */
|
|
/* <Input> */
|
|
/* degree :: The degree of the Bezier arc (either 2 or 3). */
|
|
/* */
|
|
/* splitter :: The function to split Bezier arcs. */
|
|
/* */
|
|
/* miny :: A lower vertical clipping bound value. */
|
|
/* */
|
|
/* maxy :: An upper vertical clipping bound value. */
|
|
/* */
|
|
/* <Return> */
|
|
/* SUCCESS on success, FAILURE on render pool overflow. */
|
|
/* */
|
|
static Bool
|
|
Bezier_Up( RAS_ARGS Int degree,
|
|
TSplitter splitter,
|
|
Long miny,
|
|
Long maxy )
|
|
{
|
|
Long y1, y2, e, e2, e0;
|
|
Short f1;
|
|
|
|
TPoint* arc;
|
|
TPoint* start_arc;
|
|
|
|
PLong top;
|
|
|
|
|
|
arc = ras.arc;
|
|
y1 = arc[degree].y;
|
|
y2 = arc[0].y;
|
|
top = ras.top;
|
|
|
|
if ( y2 < miny || y1 > maxy )
|
|
goto Fin;
|
|
|
|
e2 = FLOOR( y2 );
|
|
|
|
if ( e2 > maxy )
|
|
e2 = maxy;
|
|
|
|
e0 = miny;
|
|
|
|
if ( y1 < miny )
|
|
e = miny;
|
|
else
|
|
{
|
|
e = CEILING( y1 );
|
|
f1 = (Short)( FRAC( y1 ) );
|
|
e0 = e;
|
|
|
|
if ( f1 == 0 )
|
|
{
|
|
if ( ras.joint )
|
|
{
|
|
top--;
|
|
ras.joint = FALSE;
|
|
}
|
|
|
|
*top++ = arc[degree].x;
|
|
|
|
e += ras.precision;
|
|
}
|
|
}
|
|
|
|
if ( ras.fresh )
|
|
{
|
|
ras.cProfile->start = TRUNC( e0 );
|
|
ras.fresh = FALSE;
|
|
}
|
|
|
|
if ( e2 < e )
|
|
goto Fin;
|
|
|
|
if ( ( top + TRUNC( e2 - e ) + 1 ) >= ras.maxBuff )
|
|
{
|
|
ras.top = top;
|
|
ras.error = FT_THROW( Overflow );
|
|
return FAILURE;
|
|
}
|
|
|
|
start_arc = arc;
|
|
|
|
do
|
|
{
|
|
ras.joint = FALSE;
|
|
|
|
y2 = arc[0].y;
|
|
|
|
if ( y2 > e )
|
|
{
|
|
y1 = arc[degree].y;
|
|
if ( y2 - y1 >= ras.precision_step )
|
|
{
|
|
splitter( arc );
|
|
arc += degree;
|
|
}
|
|
else
|
|
{
|
|
*top++ = arc[degree].x + FMulDiv( arc[0].x - arc[degree].x,
|
|
e - y1, y2 - y1 );
|
|
arc -= degree;
|
|
e += ras.precision;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if ( y2 == e )
|
|
{
|
|
ras.joint = TRUE;
|
|
*top++ = arc[0].x;
|
|
|
|
e += ras.precision;
|
|
}
|
|
arc -= degree;
|
|
}
|
|
} while ( arc >= start_arc && e <= e2 );
|
|
|
|
Fin:
|
|
ras.top = top;
|
|
ras.arc -= degree;
|
|
return SUCCESS;
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* <Function> */
|
|
/* Bezier_Down */
|
|
/* */
|
|
/* <Description> */
|
|
/* Compute the x-coordinates of an descending Bezier arc and store */
|
|
/* them in the render pool. */
|
|
/* */
|
|
/* <Input> */
|
|
/* degree :: The degree of the Bezier arc (either 2 or 3). */
|
|
/* */
|
|
/* splitter :: The function to split Bezier arcs. */
|
|
/* */
|
|
/* miny :: A lower vertical clipping bound value. */
|
|
/* */
|
|
/* maxy :: An upper vertical clipping bound value. */
|
|
/* */
|
|
/* <Return> */
|
|
/* SUCCESS on success, FAILURE on render pool overflow. */
|
|
/* */
|
|
static Bool
|
|
Bezier_Down( RAS_ARGS Int degree,
|
|
TSplitter splitter,
|
|
Long miny,
|
|
Long maxy )
|
|
{
|
|
TPoint* arc = ras.arc;
|
|
Bool result, fresh;
|
|
|
|
|
|
arc[0].y = -arc[0].y;
|
|
arc[1].y = -arc[1].y;
|
|
arc[2].y = -arc[2].y;
|
|
if ( degree > 2 )
|
|
arc[3].y = -arc[3].y;
|
|
|
|
fresh = ras.fresh;
|
|
|
|
result = Bezier_Up( RAS_VARS degree, splitter, -maxy, -miny );
|
|
|
|
if ( fresh && !ras.fresh )
|
|
ras.cProfile->start = -ras.cProfile->start;
|
|
|
|
arc[0].y = -arc[0].y;
|
|
return result;
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* <Function> */
|
|
/* Line_To */
|
|
/* */
|
|
/* <Description> */
|
|
/* Inject a new line segment and adjust the Profiles list. */
|
|
/* */
|
|
/* <Input> */
|
|
/* x :: The x-coordinate of the segment's end point (its start point */
|
|
/* is stored in `lastX'). */
|
|
/* */
|
|
/* y :: The y-coordinate of the segment's end point (its start point */
|
|
/* is stored in `lastY'). */
|
|
/* */
|
|
/* <Return> */
|
|
/* SUCCESS on success, FAILURE on render pool overflow or incorrect */
|
|
/* profile. */
|
|
/* */
|
|
static Bool
|
|
Line_To( RAS_ARGS Long x,
|
|
Long y )
|
|
{
|
|
/* First, detect a change of direction */
|
|
|
|
switch ( ras.state )
|
|
{
|
|
case Unknown_State:
|
|
if ( y > ras.lastY )
|
|
{
|
|
if ( New_Profile( RAS_VARS Ascending_State,
|
|
IS_BOTTOM_OVERSHOOT( ras.lastY ) ) )
|
|
return FAILURE;
|
|
}
|
|
else
|
|
{
|
|
if ( y < ras.lastY )
|
|
if ( New_Profile( RAS_VARS Descending_State,
|
|
IS_TOP_OVERSHOOT( ras.lastY ) ) )
|
|
return FAILURE;
|
|
}
|
|
break;
|
|
|
|
case Ascending_State:
|
|
if ( y < ras.lastY )
|
|
{
|
|
if ( End_Profile( RAS_VARS IS_TOP_OVERSHOOT( ras.lastY ) ) ||
|
|
New_Profile( RAS_VARS Descending_State,
|
|
IS_TOP_OVERSHOOT( ras.lastY ) ) )
|
|
return FAILURE;
|
|
}
|
|
break;
|
|
|
|
case Descending_State:
|
|
if ( y > ras.lastY )
|
|
{
|
|
if ( End_Profile( RAS_VARS IS_BOTTOM_OVERSHOOT( ras.lastY ) ) ||
|
|
New_Profile( RAS_VARS Ascending_State,
|
|
IS_BOTTOM_OVERSHOOT( ras.lastY ) ) )
|
|
return FAILURE;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
;
|
|
}
|
|
|
|
/* Then compute the lines */
|
|
|
|
switch ( ras.state )
|
|
{
|
|
case Ascending_State:
|
|
if ( Line_Up( RAS_VARS ras.lastX, ras.lastY,
|
|
x, y, ras.minY, ras.maxY ) )
|
|
return FAILURE;
|
|
break;
|
|
|
|
case Descending_State:
|
|
if ( Line_Down( RAS_VARS ras.lastX, ras.lastY,
|
|
x, y, ras.minY, ras.maxY ) )
|
|
return FAILURE;
|
|
break;
|
|
|
|
default:
|
|
;
|
|
}
|
|
|
|
ras.lastX = x;
|
|
ras.lastY = y;
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* <Function> */
|
|
/* Conic_To */
|
|
/* */
|
|
/* <Description> */
|
|
/* Inject a new conic arc and adjust the profile list. */
|
|
/* */
|
|
/* <Input> */
|
|
/* cx :: The x-coordinate of the arc's new control point. */
|
|
/* */
|
|
/* cy :: The y-coordinate of the arc's new control point. */
|
|
/* */
|
|
/* x :: The x-coordinate of the arc's end point (its start point is */
|
|
/* stored in `lastX'). */
|
|
/* */
|
|
/* y :: The y-coordinate of the arc's end point (its start point is */
|
|
/* stored in `lastY'). */
|
|
/* */
|
|
/* <Return> */
|
|
/* SUCCESS on success, FAILURE on render pool overflow or incorrect */
|
|
/* profile. */
|
|
/* */
|
|
static Bool
|
|
Conic_To( RAS_ARGS Long cx,
|
|
Long cy,
|
|
Long x,
|
|
Long y )
|
|
{
|
|
Long y1, y2, y3, x3, ymin, ymax;
|
|
TStates state_bez;
|
|
|
|
|
|
ras.arc = ras.arcs;
|
|
ras.arc[2].x = ras.lastX;
|
|
ras.arc[2].y = ras.lastY;
|
|
ras.arc[1].x = cx;
|
|
ras.arc[1].y = cy;
|
|
ras.arc[0].x = x;
|
|
ras.arc[0].y = y;
|
|
|
|
do
|
|
{
|
|
y1 = ras.arc[2].y;
|
|
y2 = ras.arc[1].y;
|
|
y3 = ras.arc[0].y;
|
|
x3 = ras.arc[0].x;
|
|
|
|
/* first, categorize the Bezier arc */
|
|
|
|
if ( y1 <= y3 )
|
|
{
|
|
ymin = y1;
|
|
ymax = y3;
|
|
}
|
|
else
|
|
{
|
|
ymin = y3;
|
|
ymax = y1;
|
|
}
|
|
|
|
if ( y2 < ymin || y2 > ymax )
|
|
{
|
|
/* this arc has no given direction, split it! */
|
|
Split_Conic( ras.arc );
|
|
ras.arc += 2;
|
|
}
|
|
else if ( y1 == y3 )
|
|
{
|
|
/* this arc is flat, ignore it and pop it from the Bezier stack */
|
|
ras.arc -= 2;
|
|
}
|
|
else
|
|
{
|
|
/* the arc is y-monotonous, either ascending or descending */
|
|
/* detect a change of direction */
|
|
state_bez = y1 < y3 ? Ascending_State : Descending_State;
|
|
if ( ras.state != state_bez )
|
|
{
|
|
Bool o = state_bez == Ascending_State ? IS_BOTTOM_OVERSHOOT( y1 )
|
|
: IS_TOP_OVERSHOOT( y1 );
|
|
|
|
|
|
/* finalize current profile if any */
|
|
if ( ras.state != Unknown_State &&
|
|
End_Profile( RAS_VARS o ) )
|
|
goto Fail;
|
|
|
|
/* create a new profile */
|
|
if ( New_Profile( RAS_VARS state_bez, o ) )
|
|
goto Fail;
|
|
}
|
|
|
|
/* now call the appropriate routine */
|
|
if ( state_bez == Ascending_State )
|
|
{
|
|
if ( Bezier_Up( RAS_VARS 2, Split_Conic, ras.minY, ras.maxY ) )
|
|
goto Fail;
|
|
}
|
|
else
|
|
if ( Bezier_Down( RAS_VARS 2, Split_Conic, ras.minY, ras.maxY ) )
|
|
goto Fail;
|
|
}
|
|
|
|
} while ( ras.arc >= ras.arcs );
|
|
|
|
ras.lastX = x3;
|
|
ras.lastY = y3;
|
|
|
|
return SUCCESS;
|
|
|
|
Fail:
|
|
return FAILURE;
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* <Function> */
|
|
/* Cubic_To */
|
|
/* */
|
|
/* <Description> */
|
|
/* Inject a new cubic arc and adjust the profile list. */
|
|
/* */
|
|
/* <Input> */
|
|
/* cx1 :: The x-coordinate of the arc's first new control point. */
|
|
/* */
|
|
/* cy1 :: The y-coordinate of the arc's first new control point. */
|
|
/* */
|
|
/* cx2 :: The x-coordinate of the arc's second new control point. */
|
|
/* */
|
|
/* cy2 :: The y-coordinate of the arc's second new control point. */
|
|
/* */
|
|
/* x :: The x-coordinate of the arc's end point (its start point is */
|
|
/* stored in `lastX'). */
|
|
/* */
|
|
/* y :: The y-coordinate of the arc's end point (its start point is */
|
|
/* stored in `lastY'). */
|
|
/* */
|
|
/* <Return> */
|
|
/* SUCCESS on success, FAILURE on render pool overflow or incorrect */
|
|
/* profile. */
|
|
/* */
|
|
static Bool
|
|
Cubic_To( RAS_ARGS Long cx1,
|
|
Long cy1,
|
|
Long cx2,
|
|
Long cy2,
|
|
Long x,
|
|
Long y )
|
|
{
|
|
Long y1, y2, y3, y4, x4, ymin1, ymax1, ymin2, ymax2;
|
|
TStates state_bez;
|
|
|
|
|
|
ras.arc = ras.arcs;
|
|
ras.arc[3].x = ras.lastX;
|
|
ras.arc[3].y = ras.lastY;
|
|
ras.arc[2].x = cx1;
|
|
ras.arc[2].y = cy1;
|
|
ras.arc[1].x = cx2;
|
|
ras.arc[1].y = cy2;
|
|
ras.arc[0].x = x;
|
|
ras.arc[0].y = y;
|
|
|
|
do
|
|
{
|
|
y1 = ras.arc[3].y;
|
|
y2 = ras.arc[2].y;
|
|
y3 = ras.arc[1].y;
|
|
y4 = ras.arc[0].y;
|
|
x4 = ras.arc[0].x;
|
|
|
|
/* first, categorize the Bezier arc */
|
|
|
|
if ( y1 <= y4 )
|
|
{
|
|
ymin1 = y1;
|
|
ymax1 = y4;
|
|
}
|
|
else
|
|
{
|
|
ymin1 = y4;
|
|
ymax1 = y1;
|
|
}
|
|
|
|
if ( y2 <= y3 )
|
|
{
|
|
ymin2 = y2;
|
|
ymax2 = y3;
|
|
}
|
|
else
|
|
{
|
|
ymin2 = y3;
|
|
ymax2 = y2;
|
|
}
|
|
|
|
if ( ymin2 < ymin1 || ymax2 > ymax1 )
|
|
{
|
|
/* this arc has no given direction, split it! */
|
|
Split_Cubic( ras.arc );
|
|
ras.arc += 3;
|
|
}
|
|
else if ( y1 == y4 )
|
|
{
|
|
/* this arc is flat, ignore it and pop it from the Bezier stack */
|
|
ras.arc -= 3;
|
|
}
|
|
else
|
|
{
|
|
state_bez = ( y1 <= y4 ) ? Ascending_State : Descending_State;
|
|
|
|
/* detect a change of direction */
|
|
if ( ras.state != state_bez )
|
|
{
|
|
Bool o = state_bez == Ascending_State ? IS_BOTTOM_OVERSHOOT( y1 )
|
|
: IS_TOP_OVERSHOOT( y1 );
|
|
|
|
|
|
/* finalize current profile if any */
|
|
if ( ras.state != Unknown_State &&
|
|
End_Profile( RAS_VARS o ) )
|
|
goto Fail;
|
|
|
|
if ( New_Profile( RAS_VARS state_bez, o ) )
|
|
goto Fail;
|
|
}
|
|
|
|
/* compute intersections */
|
|
if ( state_bez == Ascending_State )
|
|
{
|
|
if ( Bezier_Up( RAS_VARS 3, Split_Cubic, ras.minY, ras.maxY ) )
|
|
goto Fail;
|
|
}
|
|
else
|
|
if ( Bezier_Down( RAS_VARS 3, Split_Cubic, ras.minY, ras.maxY ) )
|
|
goto Fail;
|
|
}
|
|
|
|
} while ( ras.arc >= ras.arcs );
|
|
|
|
ras.lastX = x4;
|
|
ras.lastY = y4;
|
|
|
|
return SUCCESS;
|
|
|
|
Fail:
|
|
return FAILURE;
|
|
}
|
|
|
|
|
|
#undef SWAP_
|
|
#define SWAP_( x, y ) do \
|
|
{ \
|
|
Long swap = x; \
|
|
\
|
|
\
|
|
x = y; \
|
|
y = swap; \
|
|
} while ( 0 )
|
|
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* <Function> */
|
|
/* Decompose_Curve */
|
|
/* */
|
|
/* <Description> */
|
|
/* Scan the outline arrays in order to emit individual segments and */
|
|
/* Beziers by calling Line_To() and Bezier_To(). It handles all */
|
|
/* weird cases, like when the first point is off the curve, or when */
|
|
/* there are simply no `on' points in the contour! */
|
|
/* */
|
|
/* <Input> */
|
|
/* first :: The index of the first point in the contour. */
|
|
/* */
|
|
/* last :: The index of the last point in the contour. */
|
|
/* */
|
|
/* flipped :: If set, flip the direction of the curve. */
|
|
/* */
|
|
/* <Return> */
|
|
/* SUCCESS on success, FAILURE on error. */
|
|
/* */
|
|
static Bool
|
|
Decompose_Curve( RAS_ARGS UShort first,
|
|
UShort last,
|
|
Int flipped )
|
|
{
|
|
FT_Vector v_last;
|
|
FT_Vector v_control;
|
|
FT_Vector v_start;
|
|
|
|
FT_Vector* points;
|
|
FT_Vector* point;
|
|
FT_Vector* limit;
|
|
char* tags;
|
|
|
|
UInt tag; /* current point's state */
|
|
|
|
|
|
points = ras.outline.points;
|
|
limit = points + last;
|
|
|
|
v_start.x = SCALED( points[first].x );
|
|
v_start.y = SCALED( points[first].y );
|
|
v_last.x = SCALED( points[last].x );
|
|
v_last.y = SCALED( points[last].y );
|
|
|
|
if ( flipped )
|
|
{
|
|
SWAP_( v_start.x, v_start.y );
|
|
SWAP_( v_last.x, v_last.y );
|
|
}
|
|
|
|
v_control = v_start;
|
|
|
|
point = points + first;
|
|
tags = ras.outline.tags + first;
|
|
|
|
/* set scan mode if necessary */
|
|
if ( tags[0] & FT_CURVE_TAG_HAS_SCANMODE )
|
|
ras.dropOutControl = (Byte)tags[0] >> 5;
|
|
|
|
tag = FT_CURVE_TAG( tags[0] );
|
|
|
|
/* A contour cannot start with a cubic control point! */
|
|
if ( tag == FT_CURVE_TAG_CUBIC )
|
|
goto Invalid_Outline;
|
|
|
|
/* check first point to determine origin */
|
|
if ( tag == FT_CURVE_TAG_CONIC )
|
|
{
|
|
/* first point is conic control. Yes, this happens. */
|
|
if ( FT_CURVE_TAG( ras.outline.tags[last] ) == FT_CURVE_TAG_ON )
|
|
{
|
|
/* start at last point if it is on the curve */
|
|
v_start = v_last;
|
|
limit--;
|
|
}
|
|
else
|
|
{
|
|
/* if both first and last points are conic, */
|
|
/* start at their middle and record its position */
|
|
/* for closure */
|
|
v_start.x = ( v_start.x + v_last.x ) / 2;
|
|
v_start.y = ( v_start.y + v_last.y ) / 2;
|
|
|
|
/* v_last = v_start; */
|
|
}
|
|
point--;
|
|
tags--;
|
|
}
|
|
|
|
ras.lastX = v_start.x;
|
|
ras.lastY = v_start.y;
|
|
|
|
while ( point < limit )
|
|
{
|
|
point++;
|
|
tags++;
|
|
|
|
tag = FT_CURVE_TAG( tags[0] );
|
|
|
|
switch ( tag )
|
|
{
|
|
case FT_CURVE_TAG_ON: /* emit a single line_to */
|
|
{
|
|
Long x, y;
|
|
|
|
|
|
x = SCALED( point->x );
|
|
y = SCALED( point->y );
|
|
if ( flipped )
|
|
SWAP_( x, y );
|
|
|
|
if ( Line_To( RAS_VARS x, y ) )
|
|
goto Fail;
|
|
continue;
|
|
}
|
|
|
|
case FT_CURVE_TAG_CONIC: /* consume conic arcs */
|
|
v_control.x = SCALED( point[0].x );
|
|
v_control.y = SCALED( point[0].y );
|
|
|
|
if ( flipped )
|
|
SWAP_( v_control.x, v_control.y );
|
|
|
|
Do_Conic:
|
|
if ( point < limit )
|
|
{
|
|
FT_Vector v_middle;
|
|
Long x, y;
|
|
|
|
|
|
point++;
|
|
tags++;
|
|
tag = FT_CURVE_TAG( tags[0] );
|
|
|
|
x = SCALED( point[0].x );
|
|
y = SCALED( point[0].y );
|
|
|
|
if ( flipped )
|
|
SWAP_( x, y );
|
|
|
|
if ( tag == FT_CURVE_TAG_ON )
|
|
{
|
|
if ( Conic_To( RAS_VARS v_control.x, v_control.y, x, y ) )
|
|
goto Fail;
|
|
continue;
|
|
}
|
|
|
|
if ( tag != FT_CURVE_TAG_CONIC )
|
|
goto Invalid_Outline;
|
|
|
|
v_middle.x = ( v_control.x + x ) / 2;
|
|
v_middle.y = ( v_control.y + y ) / 2;
|
|
|
|
if ( Conic_To( RAS_VARS v_control.x, v_control.y,
|
|
v_middle.x, v_middle.y ) )
|
|
goto Fail;
|
|
|
|
v_control.x = x;
|
|
v_control.y = y;
|
|
|
|
goto Do_Conic;
|
|
}
|
|
|
|
if ( Conic_To( RAS_VARS v_control.x, v_control.y,
|
|
v_start.x, v_start.y ) )
|
|
goto Fail;
|
|
|
|
goto Close;
|
|
|
|
default: /* FT_CURVE_TAG_CUBIC */
|
|
{
|
|
Long x1, y1, x2, y2, x3, y3;
|
|
|
|
|
|
if ( point + 1 > limit ||
|
|
FT_CURVE_TAG( tags[1] ) != FT_CURVE_TAG_CUBIC )
|
|
goto Invalid_Outline;
|
|
|
|
point += 2;
|
|
tags += 2;
|
|
|
|
x1 = SCALED( point[-2].x );
|
|
y1 = SCALED( point[-2].y );
|
|
x2 = SCALED( point[-1].x );
|
|
y2 = SCALED( point[-1].y );
|
|
|
|
if ( flipped )
|
|
{
|
|
SWAP_( x1, y1 );
|
|
SWAP_( x2, y2 );
|
|
}
|
|
|
|
if ( point <= limit )
|
|
{
|
|
x3 = SCALED( point[0].x );
|
|
y3 = SCALED( point[0].y );
|
|
|
|
if ( flipped )
|
|
SWAP_( x3, y3 );
|
|
|
|
if ( Cubic_To( RAS_VARS x1, y1, x2, y2, x3, y3 ) )
|
|
goto Fail;
|
|
continue;
|
|
}
|
|
|
|
if ( Cubic_To( RAS_VARS x1, y1, x2, y2, v_start.x, v_start.y ) )
|
|
goto Fail;
|
|
goto Close;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* close the contour with a line segment */
|
|
if ( Line_To( RAS_VARS v_start.x, v_start.y ) )
|
|
goto Fail;
|
|
|
|
Close:
|
|
return SUCCESS;
|
|
|
|
Invalid_Outline:
|
|
ras.error = FT_THROW( Invalid );
|
|
|
|
Fail:
|
|
return FAILURE;
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* <Function> */
|
|
/* Convert_Glyph */
|
|
/* */
|
|
/* <Description> */
|
|
/* Convert a glyph into a series of segments and arcs and make a */
|
|
/* profiles list with them. */
|
|
/* */
|
|
/* <Input> */
|
|
/* flipped :: If set, flip the direction of curve. */
|
|
/* */
|
|
/* <Return> */
|
|
/* SUCCESS on success, FAILURE if any error was encountered during */
|
|
/* rendering. */
|
|
/* */
|
|
static Bool
|
|
Convert_Glyph( RAS_ARGS Int flipped )
|
|
{
|
|
Int i;
|
|
UInt start;
|
|
|
|
|
|
ras.fProfile = NULL;
|
|
ras.joint = FALSE;
|
|
ras.fresh = FALSE;
|
|
|
|
ras.maxBuff = ras.sizeBuff - AlignProfileSize;
|
|
|
|
ras.numTurns = 0;
|
|
|
|
ras.cProfile = (PProfile)ras.top;
|
|
ras.cProfile->offset = ras.top;
|
|
ras.num_Profs = 0;
|
|
|
|
start = 0;
|
|
|
|
for ( i = 0; i < ras.outline.n_contours; i++ )
|
|
{
|
|
PProfile lastProfile;
|
|
Bool o;
|
|
|
|
|
|
ras.state = Unknown_State;
|
|
ras.gProfile = NULL;
|
|
|
|
if ( Decompose_Curve( RAS_VARS (UShort)start,
|
|
(UShort)ras.outline.contours[i],
|
|
flipped ) )
|
|
return FAILURE;
|
|
|
|
start = (UShort)ras.outline.contours[i] + 1;
|
|
|
|
/* we must now check whether the extreme arcs join or not */
|
|
if ( FRAC( ras.lastY ) == 0 &&
|
|
ras.lastY >= ras.minY &&
|
|
ras.lastY <= ras.maxY )
|
|
if ( ras.gProfile &&
|
|
( ras.gProfile->flags & Flow_Up ) ==
|
|
( ras.cProfile->flags & Flow_Up ) )
|
|
ras.top--;
|
|
/* Note that ras.gProfile can be nil if the contour was too small */
|
|
/* to be drawn. */
|
|
|
|
lastProfile = ras.cProfile;
|
|
if ( ras.top != ras.cProfile->offset &&
|
|
( ras.cProfile->flags & Flow_Up ) )
|
|
o = IS_TOP_OVERSHOOT( ras.lastY );
|
|
else
|
|
o = IS_BOTTOM_OVERSHOOT( ras.lastY );
|
|
if ( End_Profile( RAS_VARS o ) )
|
|
return FAILURE;
|
|
|
|
/* close the `next profile in contour' linked list */
|
|
if ( ras.gProfile )
|
|
lastProfile->next = ras.gProfile;
|
|
}
|
|
|
|
if ( Finalize_Profile_Table( RAS_VAR ) )
|
|
return FAILURE;
|
|
|
|
return (Bool)( ras.top < ras.maxBuff ? SUCCESS : FAILURE );
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/*************************************************************************/
|
|
/** **/
|
|
/** SCAN-LINE SWEEPS AND DRAWING **/
|
|
/** **/
|
|
/*************************************************************************/
|
|
/*************************************************************************/
|
|
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* Init_Linked */
|
|
/* */
|
|
/* Initializes an empty linked list. */
|
|
/* */
|
|
static void
|
|
Init_Linked( TProfileList* l )
|
|
{
|
|
*l = NULL;
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* InsNew */
|
|
/* */
|
|
/* Inserts a new profile in a linked list. */
|
|
/* */
|
|
static void
|
|
InsNew( PProfileList list,
|
|
PProfile profile )
|
|
{
|
|
PProfile *old, current;
|
|
Long x;
|
|
|
|
|
|
old = list;
|
|
current = *old;
|
|
x = profile->X;
|
|
|
|
while ( current )
|
|
{
|
|
if ( x < current->X )
|
|
break;
|
|
old = ¤t->link;
|
|
current = *old;
|
|
}
|
|
|
|
profile->link = current;
|
|
*old = profile;
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* DelOld */
|
|
/* */
|
|
/* Removes an old profile from a linked list. */
|
|
/* */
|
|
static void
|
|
DelOld( PProfileList list,
|
|
PProfile profile )
|
|
{
|
|
PProfile *old, current;
|
|
|
|
|
|
old = list;
|
|
current = *old;
|
|
|
|
while ( current )
|
|
{
|
|
if ( current == profile )
|
|
{
|
|
*old = current->link;
|
|
return;
|
|
}
|
|
|
|
old = ¤t->link;
|
|
current = *old;
|
|
}
|
|
|
|
/* we should never get there, unless the profile was not part of */
|
|
/* the list. */
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* Sort */
|
|
/* */
|
|
/* Sorts a trace list. In 95%, the list is already sorted. We need */
|
|
/* an algorithm which is fast in this case. Bubble sort is enough */
|
|
/* and simple. */
|
|
/* */
|
|
static void
|
|
Sort( PProfileList list )
|
|
{
|
|
PProfile *old, current, next;
|
|
|
|
|
|
/* First, set the new X coordinate of each profile */
|
|
current = *list;
|
|
while ( current )
|
|
{
|
|
current->X = *current->offset;
|
|
current->offset += ( current->flags & Flow_Up ) ? 1 : -1;
|
|
current->height--;
|
|
current = current->link;
|
|
}
|
|
|
|
/* Then sort them */
|
|
old = list;
|
|
current = *old;
|
|
|
|
if ( !current )
|
|
return;
|
|
|
|
next = current->link;
|
|
|
|
while ( next )
|
|
{
|
|
if ( current->X <= next->X )
|
|
{
|
|
old = ¤t->link;
|
|
current = *old;
|
|
|
|
if ( !current )
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
*old = next;
|
|
current->link = next->link;
|
|
next->link = current;
|
|
|
|
old = list;
|
|
current = *old;
|
|
}
|
|
|
|
next = current->link;
|
|
}
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* Vertical Sweep Procedure Set */
|
|
/* */
|
|
/* These four routines are used during the vertical black/white sweep */
|
|
/* phase by the generic Draw_Sweep() function. */
|
|
/* */
|
|
/*************************************************************************/
|
|
|
|
static void
|
|
Vertical_Sweep_Init( RAS_ARGS Short* min,
|
|
Short* max )
|
|
{
|
|
Long pitch = ras.target.pitch;
|
|
|
|
FT_UNUSED( max );
|
|
|
|
|
|
ras.traceIncr = (Short)-pitch;
|
|
ras.traceOfs = -*min * pitch;
|
|
if ( pitch > 0 )
|
|
ras.traceOfs += (Long)( ras.target.rows - 1 ) * pitch;
|
|
}
|
|
|
|
|
|
static void
|
|
Vertical_Sweep_Span( RAS_ARGS Short y,
|
|
FT_F26Dot6 x1,
|
|
FT_F26Dot6 x2,
|
|
PProfile left,
|
|
PProfile right )
|
|
{
|
|
Long e1, e2;
|
|
Byte* target;
|
|
|
|
Int dropOutControl = left->flags & 7;
|
|
|
|
FT_UNUSED( y );
|
|
FT_UNUSED( left );
|
|
FT_UNUSED( right );
|
|
|
|
|
|
/* in high-precision mode, we need 12 digits after the comma to */
|
|
/* represent multiples of 1/(1<<12) = 1/4096 */
|
|
FT_TRACE7(( " y=%d x=[%.12f;%.12f], drop-out=%d",
|
|
y,
|
|
x1 / (double)ras.precision,
|
|
x2 / (double)ras.precision,
|
|
dropOutControl ));
|
|
|
|
/* Drop-out control */
|
|
|
|
e1 = TRUNC( CEILING( x1 ) );
|
|
|
|
if ( dropOutControl != 2 &&
|
|
x2 - x1 - ras.precision <= ras.precision_jitter )
|
|
e2 = e1;
|
|
else
|
|
e2 = TRUNC( FLOOR( x2 ) );
|
|
|
|
if ( e2 >= 0 && e1 < ras.bWidth )
|
|
{
|
|
Int c1, c2;
|
|
Byte f1, f2;
|
|
|
|
|
|
if ( e1 < 0 )
|
|
e1 = 0;
|
|
if ( e2 >= ras.bWidth )
|
|
e2 = ras.bWidth - 1;
|
|
|
|
FT_TRACE7(( " -> x=[%d;%d]", e1, e2 ));
|
|
|
|
c1 = (Short)( e1 >> 3 );
|
|
c2 = (Short)( e2 >> 3 );
|
|
|
|
f1 = (Byte) ( 0xFF >> ( e1 & 7 ) );
|
|
f2 = (Byte) ~( 0x7F >> ( e2 & 7 ) );
|
|
|
|
target = ras.bTarget + ras.traceOfs + c1;
|
|
c2 -= c1;
|
|
|
|
if ( c2 > 0 )
|
|
{
|
|
target[0] |= f1;
|
|
|
|
/* memset() is slower than the following code on many platforms. */
|
|
/* This is due to the fact that, in the vast majority of cases, */
|
|
/* the span length in bytes is relatively small. */
|
|
c2--;
|
|
while ( c2 > 0 )
|
|
{
|
|
*(++target) = 0xFF;
|
|
c2--;
|
|
}
|
|
target[1] |= f2;
|
|
}
|
|
else
|
|
*target |= ( f1 & f2 );
|
|
}
|
|
|
|
FT_TRACE7(( "\n" ));
|
|
}
|
|
|
|
|
|
static void
|
|
Vertical_Sweep_Drop( RAS_ARGS Short y,
|
|
FT_F26Dot6 x1,
|
|
FT_F26Dot6 x2,
|
|
PProfile left,
|
|
PProfile right )
|
|
{
|
|
Long e1, e2, pxl;
|
|
Short c1, f1;
|
|
|
|
|
|
FT_TRACE7(( " y=%d x=[%.12f;%.12f]",
|
|
y,
|
|
x1 / (double)ras.precision,
|
|
x2 / (double)ras.precision ));
|
|
|
|
/* Drop-out control */
|
|
|
|
/* e2 x2 x1 e1 */
|
|
/* */
|
|
/* ^ | */
|
|
/* | | */
|
|
/* +-------------+---------------------+------------+ */
|
|
/* | | */
|
|
/* | v */
|
|
/* */
|
|
/* pixel contour contour pixel */
|
|
/* center center */
|
|
|
|
/* drop-out mode scan conversion rules (as defined in OpenType) */
|
|
/* --------------------------------------------------------------- */
|
|
/* 0 1, 2, 3 */
|
|
/* 1 1, 2, 4 */
|
|
/* 2 1, 2 */
|
|
/* 3 same as mode 2 */
|
|
/* 4 1, 2, 5 */
|
|
/* 5 1, 2, 6 */
|
|
/* 6, 7 same as mode 2 */
|
|
|
|
e1 = CEILING( x1 );
|
|
e2 = FLOOR ( x2 );
|
|
pxl = e1;
|
|
|
|
if ( e1 > e2 )
|
|
{
|
|
Int dropOutControl = left->flags & 7;
|
|
|
|
|
|
FT_TRACE7(( ", drop-out=%d", dropOutControl ));
|
|
|
|
if ( e1 == e2 + ras.precision )
|
|
{
|
|
switch ( dropOutControl )
|
|
{
|
|
case 0: /* simple drop-outs including stubs */
|
|
pxl = e2;
|
|
break;
|
|
|
|
case 4: /* smart drop-outs including stubs */
|
|
pxl = FLOOR( ( x1 + x2 - 1 ) / 2 + ras.precision_half );
|
|
break;
|
|
|
|
case 1: /* simple drop-outs excluding stubs */
|
|
case 5: /* smart drop-outs excluding stubs */
|
|
|
|
/* Drop-out Control Rules #4 and #6 */
|
|
|
|
/* The specification neither provides an exact definition */
|
|
/* of a `stub' nor gives exact rules to exclude them. */
|
|
/* */
|
|
/* Here the constraints we use to recognize a stub. */
|
|
/* */
|
|
/* upper stub: */
|
|
/* */
|
|
/* - P_Left and P_Right are in the same contour */
|
|
/* - P_Right is the successor of P_Left in that contour */
|
|
/* - y is the top of P_Left and P_Right */
|
|
/* */
|
|
/* lower stub: */
|
|
/* */
|
|
/* - P_Left and P_Right are in the same contour */
|
|
/* - P_Left is the successor of P_Right in that contour */
|
|
/* - y is the bottom of P_Left */
|
|
/* */
|
|
/* We draw a stub if the following constraints are met. */
|
|
/* */
|
|
/* - for an upper or lower stub, there is top or bottom */
|
|
/* overshoot, respectively */
|
|
/* - the covered interval is greater or equal to a half */
|
|
/* pixel */
|
|
|
|
/* upper stub test */
|
|
if ( left->next == right &&
|
|
left->height <= 0 &&
|
|
!( left->flags & Overshoot_Top &&
|
|
x2 - x1 >= ras.precision_half ) )
|
|
goto Exit;
|
|
|
|
/* lower stub test */
|
|
if ( right->next == left &&
|
|
left->start == y &&
|
|
!( left->flags & Overshoot_Bottom &&
|
|
x2 - x1 >= ras.precision_half ) )
|
|
goto Exit;
|
|
|
|
if ( dropOutControl == 1 )
|
|
pxl = e2;
|
|
else
|
|
pxl = FLOOR( ( x1 + x2 - 1 ) / 2 + ras.precision_half );
|
|
break;
|
|
|
|
default: /* modes 2, 3, 6, 7 */
|
|
goto Exit; /* no drop-out control */
|
|
}
|
|
|
|
/* undocumented but confirmed: If the drop-out would result in a */
|
|
/* pixel outside of the bounding box, use the pixel inside of the */
|
|
/* bounding box instead */
|
|
if ( pxl < 0 )
|
|
pxl = e1;
|
|
else if ( TRUNC( pxl ) >= ras.bWidth )
|
|
pxl = e2;
|
|
|
|
/* check that the other pixel isn't set */
|
|
e1 = pxl == e1 ? e2 : e1;
|
|
|
|
e1 = TRUNC( e1 );
|
|
|
|
c1 = (Short)( e1 >> 3 );
|
|
f1 = (Short)( e1 & 7 );
|
|
|
|
if ( e1 >= 0 && e1 < ras.bWidth &&
|
|
ras.bTarget[ras.traceOfs + c1] & ( 0x80 >> f1 ) )
|
|
goto Exit;
|
|
}
|
|
else
|
|
goto Exit;
|
|
}
|
|
|
|
e1 = TRUNC( pxl );
|
|
|
|
if ( e1 >= 0 && e1 < ras.bWidth )
|
|
{
|
|
FT_TRACE7(( " -> x=%d (drop-out)", e1 ));
|
|
|
|
c1 = (Short)( e1 >> 3 );
|
|
f1 = (Short)( e1 & 7 );
|
|
|
|
ras.bTarget[ras.traceOfs + c1] |= (char)( 0x80 >> f1 );
|
|
}
|
|
|
|
Exit:
|
|
FT_TRACE7(( "\n" ));
|
|
}
|
|
|
|
|
|
static void
|
|
Vertical_Sweep_Step( RAS_ARG )
|
|
{
|
|
ras.traceOfs += ras.traceIncr;
|
|
}
|
|
|
|
|
|
/***********************************************************************/
|
|
/* */
|
|
/* Horizontal Sweep Procedure Set */
|
|
/* */
|
|
/* These four routines are used during the horizontal black/white */
|
|
/* sweep phase by the generic Draw_Sweep() function. */
|
|
/* */
|
|
/***********************************************************************/
|
|
|
|
static void
|
|
Horizontal_Sweep_Init( RAS_ARGS Short* min,
|
|
Short* max )
|
|
{
|
|
/* nothing, really */
|
|
FT_UNUSED_RASTER;
|
|
FT_UNUSED( min );
|
|
FT_UNUSED( max );
|
|
}
|
|
|
|
|
|
static void
|
|
Horizontal_Sweep_Span( RAS_ARGS Short y,
|
|
FT_F26Dot6 x1,
|
|
FT_F26Dot6 x2,
|
|
PProfile left,
|
|
PProfile right )
|
|
{
|
|
FT_UNUSED( left );
|
|
FT_UNUSED( right );
|
|
|
|
|
|
if ( x2 - x1 < ras.precision )
|
|
{
|
|
Long e1, e2;
|
|
|
|
|
|
FT_TRACE7(( " x=%d y=[%.12f;%.12f]",
|
|
y,
|
|
x1 / (double)ras.precision,
|
|
x2 / (double)ras.precision ));
|
|
|
|
e1 = CEILING( x1 );
|
|
e2 = FLOOR ( x2 );
|
|
|
|
if ( e1 == e2 )
|
|
{
|
|
e1 = TRUNC( e1 );
|
|
|
|
if ( e1 >= 0 && (ULong)e1 < ras.target.rows )
|
|
{
|
|
Byte f1;
|
|
PByte bits;
|
|
PByte p;
|
|
|
|
|
|
FT_TRACE7(( " -> y=%d (drop-out)", e1 ));
|
|
|
|
bits = ras.bTarget + ( y >> 3 );
|
|
f1 = (Byte)( 0x80 >> ( y & 7 ) );
|
|
p = bits - e1 * ras.target.pitch;
|
|
|
|
if ( ras.target.pitch > 0 )
|
|
p += (Long)( ras.target.rows - 1 ) * ras.target.pitch;
|
|
|
|
p[0] |= f1;
|
|
}
|
|
}
|
|
|
|
FT_TRACE7(( "\n" ));
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
Horizontal_Sweep_Drop( RAS_ARGS Short y,
|
|
FT_F26Dot6 x1,
|
|
FT_F26Dot6 x2,
|
|
PProfile left,
|
|
PProfile right )
|
|
{
|
|
Long e1, e2, pxl;
|
|
PByte bits;
|
|
Byte f1;
|
|
|
|
|
|
FT_TRACE7(( " x=%d y=[%.12f;%.12f]",
|
|
y,
|
|
x1 / (double)ras.precision,
|
|
x2 / (double)ras.precision ));
|
|
|
|
/* During the horizontal sweep, we only take care of drop-outs */
|
|
|
|
/* e1 + <-- pixel center */
|
|
/* | */
|
|
/* x1 ---+--> <-- contour */
|
|
/* | */
|
|
/* | */
|
|
/* x2 <--+--- <-- contour */
|
|
/* | */
|
|
/* | */
|
|
/* e2 + <-- pixel center */
|
|
|
|
e1 = CEILING( x1 );
|
|
e2 = FLOOR ( x2 );
|
|
pxl = e1;
|
|
|
|
if ( e1 > e2 )
|
|
{
|
|
Int dropOutControl = left->flags & 7;
|
|
|
|
|
|
FT_TRACE7(( ", dropout=%d", dropOutControl ));
|
|
|
|
if ( e1 == e2 + ras.precision )
|
|
{
|
|
switch ( dropOutControl )
|
|
{
|
|
case 0: /* simple drop-outs including stubs */
|
|
pxl = e2;
|
|
break;
|
|
|
|
case 4: /* smart drop-outs including stubs */
|
|
pxl = FLOOR( ( x1 + x2 - 1 ) / 2 + ras.precision_half );
|
|
break;
|
|
|
|
case 1: /* simple drop-outs excluding stubs */
|
|
case 5: /* smart drop-outs excluding stubs */
|
|
/* see Vertical_Sweep_Drop for details */
|
|
|
|
/* rightmost stub test */
|
|
if ( left->next == right &&
|
|
left->height <= 0 &&
|
|
!( left->flags & Overshoot_Top &&
|
|
x2 - x1 >= ras.precision_half ) )
|
|
goto Exit;
|
|
|
|
/* leftmost stub test */
|
|
if ( right->next == left &&
|
|
left->start == y &&
|
|
!( left->flags & Overshoot_Bottom &&
|
|
x2 - x1 >= ras.precision_half ) )
|
|
goto Exit;
|
|
|
|
if ( dropOutControl == 1 )
|
|
pxl = e2;
|
|
else
|
|
pxl = FLOOR( ( x1 + x2 - 1 ) / 2 + ras.precision_half );
|
|
break;
|
|
|
|
default: /* modes 2, 3, 6, 7 */
|
|
goto Exit; /* no drop-out control */
|
|
}
|
|
|
|
/* undocumented but confirmed: If the drop-out would result in a */
|
|
/* pixel outside of the bounding box, use the pixel inside of the */
|
|
/* bounding box instead */
|
|
if ( pxl < 0 )
|
|
pxl = e1;
|
|
else if ( (ULong)( TRUNC( pxl ) ) >= ras.target.rows )
|
|
pxl = e2;
|
|
|
|
/* check that the other pixel isn't set */
|
|
e1 = pxl == e1 ? e2 : e1;
|
|
|
|
e1 = TRUNC( e1 );
|
|
|
|
bits = ras.bTarget + ( y >> 3 );
|
|
f1 = (Byte)( 0x80 >> ( y & 7 ) );
|
|
|
|
bits -= e1 * ras.target.pitch;
|
|
if ( ras.target.pitch > 0 )
|
|
bits += (Long)( ras.target.rows - 1 ) * ras.target.pitch;
|
|
|
|
if ( e1 >= 0 &&
|
|
(ULong)e1 < ras.target.rows &&
|
|
*bits & f1 )
|
|
goto Exit;
|
|
}
|
|
else
|
|
goto Exit;
|
|
}
|
|
|
|
e1 = TRUNC( pxl );
|
|
|
|
if ( e1 >= 0 && (ULong)e1 < ras.target.rows )
|
|
{
|
|
FT_TRACE7(( " -> y=%d (drop-out)", e1 ));
|
|
|
|
bits = ras.bTarget + ( y >> 3 );
|
|
f1 = (Byte)( 0x80 >> ( y & 7 ) );
|
|
bits -= e1 * ras.target.pitch;
|
|
|
|
if ( ras.target.pitch > 0 )
|
|
bits += (Long)( ras.target.rows - 1 ) * ras.target.pitch;
|
|
|
|
bits[0] |= f1;
|
|
}
|
|
|
|
Exit:
|
|
FT_TRACE7(( "\n" ));
|
|
}
|
|
|
|
|
|
static void
|
|
Horizontal_Sweep_Step( RAS_ARG )
|
|
{
|
|
/* Nothing, really */
|
|
FT_UNUSED_RASTER;
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* Generic Sweep Drawing routine */
|
|
/* */
|
|
/*************************************************************************/
|
|
|
|
static Bool
|
|
Draw_Sweep( RAS_ARG )
|
|
{
|
|
Short y, y_change, y_height;
|
|
|
|
PProfile P, Q, P_Left, P_Right;
|
|
|
|
Short min_Y, max_Y, top, bottom, dropouts;
|
|
|
|
Long x1, x2, xs, e1, e2;
|
|
|
|
TProfileList waiting;
|
|
TProfileList draw_left, draw_right;
|
|
|
|
|
|
/* initialize empty linked lists */
|
|
|
|
Init_Linked( &waiting );
|
|
|
|
Init_Linked( &draw_left );
|
|
Init_Linked( &draw_right );
|
|
|
|
/* first, compute min and max Y */
|
|
|
|
P = ras.fProfile;
|
|
max_Y = (Short)TRUNC( ras.minY );
|
|
min_Y = (Short)TRUNC( ras.maxY );
|
|
|
|
while ( P )
|
|
{
|
|
Q = P->link;
|
|
|
|
bottom = (Short)P->start;
|
|
top = (Short)( P->start + P->height - 1 );
|
|
|
|
if ( min_Y > bottom )
|
|
min_Y = bottom;
|
|
if ( max_Y < top )
|
|
max_Y = top;
|
|
|
|
P->X = 0;
|
|
InsNew( &waiting, P );
|
|
|
|
P = Q;
|
|
}
|
|
|
|
/* check the Y-turns */
|
|
if ( ras.numTurns == 0 )
|
|
{
|
|
ras.error = FT_THROW( Invalid );
|
|
return FAILURE;
|
|
}
|
|
|
|
/* now initialize the sweep */
|
|
|
|
ras.Proc_Sweep_Init( RAS_VARS &min_Y, &max_Y );
|
|
|
|
/* then compute the distance of each profile from min_Y */
|
|
|
|
P = waiting;
|
|
|
|
while ( P )
|
|
{
|
|
P->countL = P->start - min_Y;
|
|
P = P->link;
|
|
}
|
|
|
|
/* let's go */
|
|
|
|
y = min_Y;
|
|
y_height = 0;
|
|
|
|
if ( ras.numTurns > 0 &&
|
|
ras.sizeBuff[-ras.numTurns] == min_Y )
|
|
ras.numTurns--;
|
|
|
|
while ( ras.numTurns > 0 )
|
|
{
|
|
/* check waiting list for new activations */
|
|
|
|
P = waiting;
|
|
|
|
while ( P )
|
|
{
|
|
Q = P->link;
|
|
P->countL -= y_height;
|
|
if ( P->countL == 0 )
|
|
{
|
|
DelOld( &waiting, P );
|
|
|
|
if ( P->flags & Flow_Up )
|
|
InsNew( &draw_left, P );
|
|
else
|
|
InsNew( &draw_right, P );
|
|
}
|
|
|
|
P = Q;
|
|
}
|
|
|
|
/* sort the drawing lists */
|
|
|
|
Sort( &draw_left );
|
|
Sort( &draw_right );
|
|
|
|
y_change = (Short)ras.sizeBuff[-ras.numTurns--];
|
|
y_height = (Short)( y_change - y );
|
|
|
|
while ( y < y_change )
|
|
{
|
|
/* let's trace */
|
|
|
|
dropouts = 0;
|
|
|
|
P_Left = draw_left;
|
|
P_Right = draw_right;
|
|
|
|
while ( P_Left )
|
|
{
|
|
x1 = P_Left ->X;
|
|
x2 = P_Right->X;
|
|
|
|
if ( x1 > x2 )
|
|
{
|
|
xs = x1;
|
|
x1 = x2;
|
|
x2 = xs;
|
|
}
|
|
|
|
e1 = FLOOR( x1 );
|
|
e2 = CEILING( x2 );
|
|
|
|
if ( x2 - x1 <= ras.precision &&
|
|
e1 != x1 && e2 != x2 )
|
|
{
|
|
if ( e1 > e2 || e2 == e1 + ras.precision )
|
|
{
|
|
Int dropOutControl = P_Left->flags & 7;
|
|
|
|
|
|
if ( dropOutControl != 2 )
|
|
{
|
|
/* a drop-out was detected */
|
|
|
|
P_Left ->X = x1;
|
|
P_Right->X = x2;
|
|
|
|
/* mark profile for drop-out processing */
|
|
P_Left->countL = 1;
|
|
dropouts++;
|
|
}
|
|
|
|
goto Skip_To_Next;
|
|
}
|
|
}
|
|
|
|
ras.Proc_Sweep_Span( RAS_VARS y, x1, x2, P_Left, P_Right );
|
|
|
|
Skip_To_Next:
|
|
|
|
P_Left = P_Left->link;
|
|
P_Right = P_Right->link;
|
|
}
|
|
|
|
/* handle drop-outs _after_ the span drawing -- */
|
|
/* drop-out processing has been moved out of the loop */
|
|
/* for performance tuning */
|
|
if ( dropouts > 0 )
|
|
goto Scan_DropOuts;
|
|
|
|
Next_Line:
|
|
|
|
ras.Proc_Sweep_Step( RAS_VAR );
|
|
|
|
y++;
|
|
|
|
if ( y < y_change )
|
|
{
|
|
Sort( &draw_left );
|
|
Sort( &draw_right );
|
|
}
|
|
}
|
|
|
|
/* now finalize the profiles that need it */
|
|
|
|
P = draw_left;
|
|
while ( P )
|
|
{
|
|
Q = P->link;
|
|
if ( P->height == 0 )
|
|
DelOld( &draw_left, P );
|
|
P = Q;
|
|
}
|
|
|
|
P = draw_right;
|
|
while ( P )
|
|
{
|
|
Q = P->link;
|
|
if ( P->height == 0 )
|
|
DelOld( &draw_right, P );
|
|
P = Q;
|
|
}
|
|
}
|
|
|
|
/* for gray-scaling, flush the bitmap scanline cache */
|
|
while ( y <= max_Y )
|
|
{
|
|
ras.Proc_Sweep_Step( RAS_VAR );
|
|
y++;
|
|
}
|
|
|
|
return SUCCESS;
|
|
|
|
Scan_DropOuts:
|
|
|
|
P_Left = draw_left;
|
|
P_Right = draw_right;
|
|
|
|
while ( P_Left )
|
|
{
|
|
if ( P_Left->countL )
|
|
{
|
|
P_Left->countL = 0;
|
|
#if 0
|
|
dropouts--; /* -- this is useful when debugging only */
|
|
#endif
|
|
ras.Proc_Sweep_Drop( RAS_VARS y,
|
|
P_Left->X,
|
|
P_Right->X,
|
|
P_Left,
|
|
P_Right );
|
|
}
|
|
|
|
P_Left = P_Left->link;
|
|
P_Right = P_Right->link;
|
|
}
|
|
|
|
goto Next_Line;
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* <Function> */
|
|
/* Render_Single_Pass */
|
|
/* */
|
|
/* <Description> */
|
|
/* Perform one sweep with sub-banding. */
|
|
/* */
|
|
/* <Input> */
|
|
/* flipped :: If set, flip the direction of the outline. */
|
|
/* */
|
|
/* <Return> */
|
|
/* Renderer error code. */
|
|
/* */
|
|
static int
|
|
Render_Single_Pass( RAS_ARGS Bool flipped )
|
|
{
|
|
Short i, j, k;
|
|
|
|
|
|
while ( ras.band_top >= 0 )
|
|
{
|
|
ras.maxY = (Long)ras.band_stack[ras.band_top].y_max * ras.precision;
|
|
ras.minY = (Long)ras.band_stack[ras.band_top].y_min * ras.precision;
|
|
|
|
ras.top = ras.buff;
|
|
|
|
ras.error = Raster_Err_None;
|
|
|
|
if ( Convert_Glyph( RAS_VARS flipped ) )
|
|
{
|
|
if ( ras.error != Raster_Err_Overflow )
|
|
return FAILURE;
|
|
|
|
ras.error = Raster_Err_None;
|
|
|
|
/* sub-banding */
|
|
|
|
#ifdef DEBUG_RASTER
|
|
ClearBand( RAS_VARS TRUNC( ras.minY ), TRUNC( ras.maxY ) );
|
|
#endif
|
|
|
|
i = ras.band_stack[ras.band_top].y_min;
|
|
j = ras.band_stack[ras.band_top].y_max;
|
|
|
|
k = (Short)( ( i + j ) / 2 );
|
|
|
|
if ( ras.band_top >= 7 || k < i )
|
|
{
|
|
ras.band_top = 0;
|
|
ras.error = FT_THROW( Invalid );
|
|
|
|
return ras.error;
|
|
}
|
|
|
|
ras.band_stack[ras.band_top + 1].y_min = k;
|
|
ras.band_stack[ras.band_top + 1].y_max = j;
|
|
|
|
ras.band_stack[ras.band_top].y_max = (Short)( k - 1 );
|
|
|
|
ras.band_top++;
|
|
}
|
|
else
|
|
{
|
|
if ( ras.fProfile )
|
|
if ( Draw_Sweep( RAS_VAR ) )
|
|
return ras.error;
|
|
ras.band_top--;
|
|
}
|
|
}
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* <Function> */
|
|
/* Render_Glyph */
|
|
/* */
|
|
/* <Description> */
|
|
/* Render a glyph in a bitmap. Sub-banding if needed. */
|
|
/* */
|
|
/* <Return> */
|
|
/* FreeType error code. 0 means success. */
|
|
/* */
|
|
static FT_Error
|
|
Render_Glyph( RAS_ARG )
|
|
{
|
|
FT_Error error;
|
|
|
|
|
|
Set_High_Precision( RAS_VARS ras.outline.flags &
|
|
FT_OUTLINE_HIGH_PRECISION );
|
|
ras.scale_shift = ras.precision_shift;
|
|
|
|
if ( ras.outline.flags & FT_OUTLINE_IGNORE_DROPOUTS )
|
|
ras.dropOutControl = 2;
|
|
else
|
|
{
|
|
if ( ras.outline.flags & FT_OUTLINE_SMART_DROPOUTS )
|
|
ras.dropOutControl = 4;
|
|
else
|
|
ras.dropOutControl = 0;
|
|
|
|
if ( !( ras.outline.flags & FT_OUTLINE_INCLUDE_STUBS ) )
|
|
ras.dropOutControl += 1;
|
|
}
|
|
|
|
ras.second_pass = (Bool)( !( ras.outline.flags &
|
|
FT_OUTLINE_SINGLE_PASS ) );
|
|
|
|
/* Vertical Sweep */
|
|
FT_TRACE7(( "Vertical pass (ftraster)\n" ));
|
|
|
|
ras.Proc_Sweep_Init = Vertical_Sweep_Init;
|
|
ras.Proc_Sweep_Span = Vertical_Sweep_Span;
|
|
ras.Proc_Sweep_Drop = Vertical_Sweep_Drop;
|
|
ras.Proc_Sweep_Step = Vertical_Sweep_Step;
|
|
|
|
ras.band_top = 0;
|
|
ras.band_stack[0].y_min = 0;
|
|
ras.band_stack[0].y_max = (Short)( ras.target.rows - 1 );
|
|
|
|
ras.bWidth = (UShort)ras.target.width;
|
|
ras.bTarget = (Byte*)ras.target.buffer;
|
|
|
|
if ( ( error = Render_Single_Pass( RAS_VARS 0 ) ) != 0 )
|
|
return error;
|
|
|
|
/* Horizontal Sweep */
|
|
if ( ras.second_pass && ras.dropOutControl != 2 )
|
|
{
|
|
FT_TRACE7(( "Horizontal pass (ftraster)\n" ));
|
|
|
|
ras.Proc_Sweep_Init = Horizontal_Sweep_Init;
|
|
ras.Proc_Sweep_Span = Horizontal_Sweep_Span;
|
|
ras.Proc_Sweep_Drop = Horizontal_Sweep_Drop;
|
|
ras.Proc_Sweep_Step = Horizontal_Sweep_Step;
|
|
|
|
ras.band_top = 0;
|
|
ras.band_stack[0].y_min = 0;
|
|
ras.band_stack[0].y_max = (Short)( ras.target.width - 1 );
|
|
|
|
if ( ( error = Render_Single_Pass( RAS_VARS 1 ) ) != 0 )
|
|
return error;
|
|
}
|
|
|
|
return Raster_Err_None;
|
|
}
|
|
|
|
|
|
static void
|
|
ft_black_init( black_PRaster raster )
|
|
{
|
|
FT_UNUSED( raster );
|
|
}
|
|
|
|
|
|
/**** RASTER OBJECT CREATION: In standalone mode, we simply use *****/
|
|
/**** a static object. *****/
|
|
|
|
|
|
#ifdef STANDALONE_
|
|
|
|
|
|
static int
|
|
ft_black_new( void* memory,
|
|
FT_Raster *araster )
|
|
{
|
|
static black_TRaster the_raster;
|
|
FT_UNUSED( memory );
|
|
|
|
|
|
*araster = (FT_Raster)&the_raster;
|
|
FT_MEM_ZERO( &the_raster, sizeof ( the_raster ) );
|
|
ft_black_init( &the_raster );
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void
|
|
ft_black_done( FT_Raster raster )
|
|
{
|
|
/* nothing */
|
|
FT_UNUSED( raster );
|
|
}
|
|
|
|
|
|
#else /* !STANDALONE_ */
|
|
|
|
|
|
static int
|
|
ft_black_new( FT_Memory memory,
|
|
black_PRaster *araster )
|
|
{
|
|
FT_Error error;
|
|
black_PRaster raster = NULL;
|
|
|
|
|
|
*araster = 0;
|
|
if ( !FT_NEW( raster ) )
|
|
{
|
|
raster->memory = memory;
|
|
ft_black_init( raster );
|
|
|
|
*araster = raster;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
|
|
static void
|
|
ft_black_done( black_PRaster raster )
|
|
{
|
|
FT_Memory memory = (FT_Memory)raster->memory;
|
|
|
|
|
|
FT_FREE( raster );
|
|
}
|
|
|
|
|
|
#endif /* !STANDALONE_ */
|
|
|
|
|
|
static void
|
|
ft_black_reset( black_PRaster raster,
|
|
char* pool_base,
|
|
Long pool_size )
|
|
{
|
|
FT_UNUSED( raster );
|
|
FT_UNUSED( pool_base );
|
|
FT_UNUSED( pool_size );
|
|
}
|
|
|
|
|
|
static int
|
|
ft_black_set_mode( black_PRaster raster,
|
|
ULong mode,
|
|
const char* palette )
|
|
{
|
|
FT_UNUSED( raster );
|
|
FT_UNUSED( mode );
|
|
FT_UNUSED( palette );
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
ft_black_render( black_PRaster raster,
|
|
const FT_Raster_Params* params )
|
|
{
|
|
const FT_Outline* outline = (const FT_Outline*)params->source;
|
|
const FT_Bitmap* target_map = params->target;
|
|
|
|
black_TWorker worker[1];
|
|
|
|
Long buffer[FT_MAX( FT_RENDER_POOL_SIZE, 2048 ) / sizeof ( Long )];
|
|
|
|
|
|
if ( !raster )
|
|
return FT_THROW( Not_Ini );
|
|
|
|
if ( !outline )
|
|
return FT_THROW( Invalid );
|
|
|
|
/* return immediately if the outline is empty */
|
|
if ( outline->n_points == 0 || outline->n_contours <= 0 )
|
|
return Raster_Err_None;
|
|
|
|
if ( !outline->contours || !outline->points )
|
|
return FT_THROW( Invalid );
|
|
|
|
if ( outline->n_points !=
|
|
outline->contours[outline->n_contours - 1] + 1 )
|
|
return FT_THROW( Invalid );
|
|
|
|
/* this version of the raster does not support direct rendering, sorry */
|
|
if ( params->flags & FT_RASTER_FLAG_DIRECT )
|
|
return FT_THROW( Unsupported );
|
|
|
|
if ( params->flags & FT_RASTER_FLAG_AA )
|
|
return FT_THROW( Unsupported );
|
|
|
|
if ( !target_map )
|
|
return FT_THROW( Invalid );
|
|
|
|
/* nothing to do */
|
|
if ( !target_map->width || !target_map->rows )
|
|
return Raster_Err_None;
|
|
|
|
if ( !target_map->buffer )
|
|
return FT_THROW( Invalid );
|
|
|
|
ras.outline = *outline;
|
|
ras.target = *target_map;
|
|
|
|
worker->buff = buffer;
|
|
worker->sizeBuff = (&buffer)[1]; /* Points to right after buffer. */
|
|
|
|
return Render_Glyph( RAS_VAR );
|
|
}
|
|
|
|
|
|
FT_DEFINE_RASTER_FUNCS(
|
|
ft_standard_raster,
|
|
|
|
FT_GLYPH_FORMAT_OUTLINE,
|
|
|
|
(FT_Raster_New_Func) ft_black_new,
|
|
(FT_Raster_Reset_Func) ft_black_reset,
|
|
(FT_Raster_Set_Mode_Func)ft_black_set_mode,
|
|
(FT_Raster_Render_Func) ft_black_render,
|
|
(FT_Raster_Done_Func) ft_black_done )
|
|
|
|
|
|
/* END */
|