4coder-non-source/test_data/lots_of_files/xatomic.h

2568 lines
66 KiB
C

/* xatomic.h internal header */
#pragma once
#ifndef _XATOMIC_H
#define _XATOMIC_H
#ifndef RC_INVOKED
#include <xatomic0.h>
#include <stddef.h> // for size_t
#include <stdlib.h>
#include <string.h>
#include <intrin.h>
#include <xutility>
#pragma pack(push,_CRT_PACKING)
#pragma warning(push,3)
#pragma push_macro("new")
#undef new
/* Defend inline assembler from iso646.h's macros. */
#pragma push_macro("and")
#pragma push_macro("or")
#pragma push_macro("xor")
#undef and
#undef or
#undef xor
#pragma warning (disable: 4100 4390 4793 6326)
#define _Compiler_barrier() _ReadWriteBarrier()
#if defined(_M_ARM)
#define _Memory_barrier() __dmb(_ARM_BARRIER_ISH)
#endif /* defined(_M_ARM) */
#ifndef _CONCAT
#define _CONCATX(x, y) x ## y
#define _CONCAT(x, y) _CONCATX(x, y)
#endif /* _CONCAT */
#define ATOMIC_BOOL_LOCK_FREE \
(1 <= _ATOMIC_MAXBYTES_LOCK_FREE ? 2 : 0)
#define _ATOMIC_CHAR_LOCK_FREE \
(1 <= _ATOMIC_MAXBYTES_LOCK_FREE ? 2 : 0)
#define _ATOMIC_CHAR16_T_LOCK_FREE \
(2 <= _ATOMIC_MAXBYTES_LOCK_FREE ? 2 : 0)
#define _ATOMIC_CHAR32_T_LOCK_FREE \
(2 <= _ATOMIC_MAXBYTES_LOCK_FREE ? 2 : 0)
#define _ATOMIC_WCHAR_T_LOCK_FREE \
(_WCHAR_T_SIZE <= _ATOMIC_MAXBYTES_LOCK_FREE ? 2 : 0)
#define _ATOMIC_SHORT_LOCK_FREE \
(_SHORT_SIZE <= _ATOMIC_MAXBYTES_LOCK_FREE ? 2 : 0)
#define _ATOMIC_INT_LOCK_FREE \
(_INT_SIZE <= _ATOMIC_MAXBYTES_LOCK_FREE ? 2 : 0)
#define _ATOMIC_LONG_LOCK_FREE \
(_LONG_SIZE <= _ATOMIC_MAXBYTES_LOCK_FREE ? 2 : 0)
#define _ATOMIC_LLONG_LOCK_FREE \
(_LONGLONG_SIZE <= _ATOMIC_MAXBYTES_LOCK_FREE ? 2 : 0)
#define ATOMIC_POINTER_LOCK_FREE \
(_ADDR_SIZE <= _ATOMIC_MAXBYTES_LOCK_FREE ? 2 : 0)
/* Interlocked intrinsic mapping for _nf/_acq/_rel */
#if defined(_M_ARM)
#define _INTRIN_RELAXED(x) _CONCAT(x, _nf)
#define _INTRIN_ACQUIRE(x) _CONCAT(x, _acq)
#define _INTRIN_RELEASE(x) _CONCAT(x, _rel)
#define _INTRIN_SEQ_CST(x) x
#else /* defined(_M_ARM) */
#define _INTRIN_RELAXED(x) x
#define _INTRIN_ACQUIRE(x) x
#define _INTRIN_RELEASE(x) x
#define _INTRIN_SEQ_CST(x) x
#endif /* defined(_M_ARM) */
#if defined(_M_IX86)
#pragma push_macro("_InterlockedExchange64")
#pragma push_macro("_InterlockedExchangeAdd64")
#pragma push_macro("_InterlockedAnd64")
#pragma push_macro("_InterlockedOr64")
#pragma push_macro("_InterlockedXor64")
#undef _InterlockedExchange64
#undef _InterlockedExchangeAdd64
#undef _InterlockedAnd64
#undef _InterlockedOr64
#undef _InterlockedXor64
#define _InterlockedExchange64 _InterlockedExchange64_ASM
#define _InterlockedExchangeAdd64 _InterlockedExchangeAdd64_ASM
#define _InterlockedAnd64 _InterlockedAnd64_ASM
#define _InterlockedOr64 _InterlockedOr64_ASM
#define _InterlockedXor64 _InterlockedXor64_ASM
inline _LONGLONG _InterlockedExchange64(volatile _LONGLONG * _Tgt, _LONGLONG _Value)
{
_Compiler_barrier();
__asm
{
mov esi, _Tgt;
mov ecx, dword ptr _Value[4];
mov ebx, dword ptr _Value;
again:
lock cmpxchg8b [esi];
jnz again;
mov dword ptr _Value[4], edx;
mov dword ptr _Value, eax;
}
_Compiler_barrier();
return (_Value);
}
inline _LONGLONG _InterlockedExchangeAdd64(volatile _LONGLONG * _Tgt, _LONGLONG _Value)
{
_Compiler_barrier();
__asm
{
mov esi, _Tgt;
mov edx, 4[esi];
mov eax, [esi];
again:
mov ecx, edx;
mov ebx, eax;
add ebx, dword ptr _Value;
adc ecx, dword ptr _Value[4];
lock cmpxchg8b [esi];
jnz again;
mov dword ptr _Value, eax;
mov dword ptr _Value[4], edx;
}
_Compiler_barrier();
return (_Value);
}
inline _LONGLONG _InterlockedAnd64(volatile _LONGLONG *_Tgt, _LONGLONG _Value)
{
_Compiler_barrier();
__asm
{
mov esi, _Tgt;
mov eax, [esi];
mov edx, 4[esi];
again:
mov ecx, edx;
mov ebx, eax;
and ebx, dword ptr _Value;
and ecx, dword ptr _Value[4];
lock cmpxchg8b [esi];
jnz again;
mov dword ptr _Value, eax;
mov dword ptr _Value[4], edx;
}
_Compiler_barrier();
return (_Value);
}
inline _LONGLONG _InterlockedOr64(volatile _LONGLONG *_Tgt, _LONGLONG _Value)
{
_Compiler_barrier();
__asm
{
mov esi, _Tgt;
mov eax, [esi];
mov edx, 4[esi];
again:
mov ecx, edx;
mov ebx, eax;
or ebx, dword ptr _Value;
or ecx, dword ptr _Value[4];
lock cmpxchg8b [esi];
jnz again;
mov dword ptr _Value, eax;
mov dword ptr _Value[4], edx;
}
_Compiler_barrier();
return (_Value);
}
inline _LONGLONG _InterlockedXor64(volatile _LONGLONG *_Tgt, _LONGLONG _Value)
{
_Compiler_barrier();
__asm
{
mov esi, _Tgt;
mov eax, [esi];
mov edx, 4[esi];
again:
mov ecx, edx;
mov ebx, eax;
xor ebx, dword ptr _Value;
xor ecx, dword ptr _Value[4];
lock cmpxchg8b [esi];
jnz again;
mov dword ptr _Value, eax;
mov dword ptr _Value[4], edx;
}
_Compiler_barrier();
return (_Value);
}
#endif /* defined(_M_IX86) */
_STD_BEGIN
/* TYPEDEFS FOR INTERNAL ARITHMETIC TYPES */
typedef unsigned char _Uint1_t;
typedef unsigned short _Uint2_t;
//typedef _Uint32t _Uint4_t;
typedef unsigned _LONGLONG _Uint8_t;
#define _ATOMIC_FLAG_TEST_AND_SET _Atomic_flag_test_and_set
#define _ATOMIC_FLAG_CLEAR _Atomic_flag_clear
#define _ATOMIC_THREAD_FENCE _Atomic_thread_fence
#define _ATOMIC_SIGNAL_FENCE _Atomic_signal_fence
#ifndef _INVALID_MEMORY_ORDER
#if _ITERATOR_DEBUG_LEVEL == 2
#define _INVALID_MEMORY_ORDER \
{_DEBUG_ERROR("Invalid memory_order"); \
_SCL_SECURE_INVALID_ARGUMENT}
#elif _ITERATOR_DEBUG_LEVEL == 1
#define _INVALID_MEMORY_ORDER \
_SCL_SECURE_VALIDATE("Invalid memory_order" && 0)
#elif _ITERATOR_DEBUG_LEVEL == 0
#define _INVALID_MEMORY_ORDER
#endif /* _ITERATOR_DEBUG_LEVEL */
#endif /* _INVALID_MEMORY_ORDER */
inline memory_order _Memory_order_upper_bound(memory_order _Order1,
memory_order _Order2)
{ /* find upper bound of two memory orders,
based on the following partial order:
seq_cst
|
acq_rel
/ \
acquire release
| |
consume |
\ /
relaxed
*/
static const memory_order _Upper[6][6] = { /* combined upper bounds */
{ memory_order_relaxed, memory_order_consume, memory_order_acquire,
memory_order_release, memory_order_acq_rel, memory_order_seq_cst },
{ memory_order_consume, memory_order_consume, memory_order_acquire,
memory_order_acq_rel, memory_order_acq_rel, memory_order_seq_cst },
{ memory_order_acquire, memory_order_acquire, memory_order_acquire,
memory_order_acq_rel, memory_order_acq_rel, memory_order_seq_cst },
{ memory_order_release, memory_order_acq_rel, memory_order_acq_rel,
memory_order_release, memory_order_acq_rel, memory_order_seq_cst },
{ memory_order_acq_rel, memory_order_acq_rel, memory_order_acq_rel,
memory_order_acq_rel, memory_order_acq_rel, memory_order_seq_cst },
{ memory_order_seq_cst, memory_order_seq_cst, memory_order_seq_cst,
memory_order_seq_cst, memory_order_seq_cst, memory_order_seq_cst
}
};
if ((_Order1 < 0) || (6 <= _Order1)
|| (_Order2 < 0) || (6 <= _Order2))
{ /* launder memory order */
_INVALID_MEMORY_ORDER;
return (memory_order_seq_cst);
}
return (_Upper[_Order1][_Order2]);
}
inline void _Validate_compare_exchange_memory_order(
memory_order _Success, memory_order _Failure)
{ /* validate success/failure */
/* _Failure may not be memory_order_release or memory_order_acq_rel
and may not be stronger than _Success */
switch (_Failure)
{
case memory_order_relaxed:
break;
case memory_order_seq_cst:
if (_Success != memory_order_seq_cst)
_INVALID_MEMORY_ORDER;
break;
case memory_order_acquire:
if ((_Success == memory_order_consume) ||
(_Success == memory_order_relaxed))
_INVALID_MEMORY_ORDER;
break;
case memory_order_consume:
if (_Success == memory_order_relaxed)
_INVALID_MEMORY_ORDER;
break;
default:
_INVALID_MEMORY_ORDER;
break;
}
}
/* _Atomic_store_1 */
inline void _Store_relaxed_1(volatile _Uint1_t *_Tgt, _Uint1_t _Value)
{ /* store _Value atomically with relaxed memory order */
#if defined(_M_ARM)
__iso_volatile_store8((volatile char *)_Tgt, _Value);
#else
*_Tgt = _Value;
#endif
}
inline void _Store_release_1(volatile _Uint1_t *_Tgt, _Uint1_t _Value)
{ /* store _Value atomically with release memory order */
#if defined(_M_ARM)
_Memory_barrier();
__iso_volatile_store8((volatile char *)_Tgt, _Value);
#else
_Compiler_barrier();
*_Tgt = _Value;
#endif
}
inline void _Store_seq_cst_1(volatile _Uint1_t *_Tgt, _Uint1_t _Value)
{ /* store _Value atomically with
sequentially consistent memory order */
#if defined(_M_ARM)
_Memory_barrier();
__iso_volatile_store8((volatile char *)_Tgt, _Value);
_Memory_barrier();
#else
_INTRIN_SEQ_CST(_InterlockedExchange8)((volatile char *)_Tgt, _Value);
#endif
}
inline void _Atomic_store_1(
volatile _Uint1_t *_Tgt, _Uint1_t _Value, memory_order _Order)
{ /* store _Value atomically */
switch (_Order)
{
case memory_order_relaxed:
_Store_relaxed_1(_Tgt, _Value);
break;
case memory_order_release:
_Store_release_1(_Tgt, _Value);
break;
case memory_order_seq_cst:
_Store_seq_cst_1(_Tgt, _Value);
break;
default:
_INVALID_MEMORY_ORDER;
break;
}
}
/* _Atomic_load_1 */
inline _Uint1_t _Load_seq_cst_1(volatile _Uint1_t *_Tgt)
{ /* load from *_Tgt atomically with
sequentially consistent memory order */
_Uint1_t _Value;
#if defined(_M_ARM)
_Value = __iso_volatile_load8((volatile char *)_Tgt);
_Memory_barrier();
#else
_Value = *_Tgt;
_Compiler_barrier();
#endif
return (_Value);
}
inline _Uint1_t _Load_relaxed_1(volatile _Uint1_t *_Tgt)
{ /* load from *_Tgt atomically with
relaxed memory order */
_Uint1_t _Value;
#if defined(_M_ARM)
_Value = __iso_volatile_load8((volatile char *)_Tgt);
#else
_Value = *_Tgt;
#endif
return (_Value);
}
inline _Uint1_t _Load_acquire_1(volatile _Uint1_t *_Tgt)
{ /* load from *_Tgt atomically with
acquire memory order */
return (_Load_seq_cst_1(_Tgt));
}
inline _Uint1_t _Atomic_load_1(
volatile _Uint1_t *_Tgt, memory_order _Order)
{ /* load from *_Tgt atomically */
switch (_Order)
{
case memory_order_relaxed:
return (_Load_relaxed_1(_Tgt));
case memory_order_consume:
case memory_order_acquire:
return (_Load_acquire_1(_Tgt));
case memory_order_seq_cst:
return (_Load_seq_cst_1(_Tgt));
default:
_INVALID_MEMORY_ORDER;
return (0);
}
}
/* _Atomic_exchange_1 */
inline _Uint1_t _Exchange_seq_cst_1(volatile _Uint1_t *_Tgt, _Uint1_t _Value)
{ /* exchange _Value and *_Tgt atomically with
sequentially consistent memory order */
return (_INTRIN_SEQ_CST(_InterlockedExchange8)((volatile char *)_Tgt, _Value));
}
inline _Uint1_t _Exchange_relaxed_1(volatile _Uint1_t *_Tgt, _Uint1_t _Value)
{ /* exchange _Value and *_Tgt atomically with
relaxed memory order */
return (_INTRIN_RELAXED(_InterlockedExchange8)((volatile char *)_Tgt, _Value));
}
inline _Uint1_t _Exchange_acquire_1(volatile _Uint1_t *_Tgt, _Uint1_t _Value)
{ /* exchange _Value and *_Tgt atomically with
acquire memory order */
return (_INTRIN_ACQUIRE(_InterlockedExchange8)((volatile char *)_Tgt, _Value));
}
inline _Uint1_t _Exchange_release_1(volatile _Uint1_t *_Tgt, _Uint1_t _Value)
{ /* exchange _Value and *_Tgt atomically with
release memory order */
return (_INTRIN_RELEASE(_InterlockedExchange8)((volatile char *)_Tgt, _Value));
}
inline _Uint1_t _Atomic_exchange_1(
volatile _Uint1_t *_Tgt, _Uint1_t _Value, memory_order _Order)
{ /* exchange _Value and *_Tgt atomically */
switch (_Order)
{
case memory_order_relaxed:
return (_Exchange_relaxed_1(_Tgt, _Value));
case memory_order_consume:
case memory_order_acquire:
return (_Exchange_acquire_1(_Tgt, _Value));
case memory_order_release:
return (_Exchange_release_1(_Tgt, _Value));
case memory_order_acq_rel:
case memory_order_seq_cst:
return (_Exchange_seq_cst_1(_Tgt, _Value));
default:
_INVALID_MEMORY_ORDER;
return (0);
}
}
/* _Atomic_compare_exchange_weak_1, _Atomic_compare_exchange_strong_1 */
inline int _Compare_exchange_seq_cst_1(volatile _Uint1_t *_Tgt,
_Uint1_t *_Exp, _Uint1_t _Value)
{ /* compare and exchange values atomically with
sequentially consistent memory order */
int _Res;
_Uint1_t _Prev = _INTRIN_SEQ_CST(_InterlockedCompareExchange8)((volatile char *)_Tgt,
_Value, *_Exp);
if (_Prev == *_Exp)
_Res = 1;
else
{ /* copy old value */
_Res = 0;
*_Exp = _Prev;
}
return (_Res);
}
inline int _Compare_exchange_relaxed_1(volatile _Uint1_t *_Tgt,
_Uint1_t *_Exp, _Uint1_t _Value)
{ /* compare and exchange values atomically with
relaxed memory order */
int _Res;
_Uint1_t _Prev = _INTRIN_RELAXED(_InterlockedCompareExchange8)((volatile char *)_Tgt,
_Value, *_Exp);
if (_Prev == *_Exp)
_Res = 1;
else
{ /* copy old value */
_Res = 0;
*_Exp = _Prev;
}
return (_Res);
}
inline int _Compare_exchange_acquire_1(volatile _Uint1_t *_Tgt,
_Uint1_t *_Exp, _Uint1_t _Value)
{ /* compare and exchange values atomically with
acquire memory order */
int _Res;
_Uint1_t _Prev = _INTRIN_ACQUIRE(_InterlockedCompareExchange8)((volatile char *)_Tgt,
_Value, *_Exp);
if (_Prev == *_Exp)
_Res = 1;
else
{ /* copy old value */
_Res = 0;
*_Exp = _Prev;
}
return (_Res);
}
inline int _Compare_exchange_release_1(volatile _Uint1_t *_Tgt,
_Uint1_t *_Exp, _Uint1_t _Value)
{ /* compare and exchange values atomically with
release memory order */
int _Res;
_Uint1_t _Prev = _INTRIN_RELEASE(_InterlockedCompareExchange8)((volatile char *)_Tgt,
_Value, *_Exp);
if (_Prev == *_Exp)
_Res = 1;
else
{ /* copy old value */
_Res = 0;
*_Exp = _Prev;
}
return (_Res);
}
inline int _Atomic_compare_exchange_strong_1(
volatile _Uint1_t *_Tgt, _Uint1_t *_Exp, _Uint1_t _Value,
memory_order _Order1, memory_order _Order2)
{ /* compare and exchange values atomically */
_Validate_compare_exchange_memory_order(_Order1, _Order2);
switch (_Memory_order_upper_bound(_Order1, _Order2))
{
case memory_order_relaxed:
return (_Compare_exchange_relaxed_1(_Tgt, _Exp, _Value));
case memory_order_consume:
case memory_order_acquire:
return (_Compare_exchange_acquire_1(_Tgt, _Exp, _Value));
case memory_order_release:
return (_Compare_exchange_release_1(_Tgt, _Exp, _Value));
case memory_order_acq_rel:
case memory_order_seq_cst:
return (_Compare_exchange_seq_cst_1(_Tgt, _Exp, _Value));
default:
_INVALID_MEMORY_ORDER;
return (0);
}
}
inline int _Atomic_compare_exchange_weak_1(
volatile _Uint1_t *_Tgt, _Uint1_t *_Exp, _Uint1_t _Value,
memory_order _Order1, memory_order _Order2)
{ /* compare and exchange values atomically */
/* No weak compare-exchange is currently available,
even for ARM, so fall back to strong */
return (_Atomic_compare_exchange_strong_1(_Tgt, _Exp, _Value,
_Order1, _Order2));
}
/* _Atomic_fetch_add_1, _Atomic_fetch_sub_1 */
inline _Uint1_t _Fetch_add_seq_cst_1(volatile _Uint1_t *_Tgt, _Uint1_t _Value)
{ /* add _Value to *_Tgt atomically with
sequentially consistent memory order */
return (_INTRIN_SEQ_CST(_InterlockedExchangeAdd8)((volatile char *)_Tgt, _Value));
}
inline _Uint1_t _Fetch_add_relaxed_1(volatile _Uint1_t *_Tgt, _Uint1_t _Value)
{ /* add _Value to *_Tgt atomically with
relaxed memory order */
return (_INTRIN_RELAXED(_InterlockedExchangeAdd8)((volatile char *)_Tgt, _Value));
}
inline _Uint1_t _Fetch_add_acquire_1(volatile _Uint1_t *_Tgt, _Uint1_t _Value)
{ /* add _Value to *_Tgt atomically with
acquire memory order */
return (_INTRIN_ACQUIRE(_InterlockedExchangeAdd8)((volatile char *)_Tgt, _Value));
}
inline _Uint1_t _Fetch_add_release_1(volatile _Uint1_t *_Tgt, _Uint1_t _Value)
{ /* add _Value to *_Tgt atomically with
release memory order */
return (_INTRIN_RELEASE(_InterlockedExchangeAdd8)((volatile char *)_Tgt, _Value));
}
inline _Uint1_t _Atomic_fetch_add_1(
volatile _Uint1_t *_Tgt, _Uint1_t _Value, memory_order _Order)
{ /* add _Value to *_Tgt atomically */
switch (_Order)
{
case memory_order_relaxed:
return (_Fetch_add_relaxed_1(_Tgt, _Value));
case memory_order_consume:
case memory_order_acquire:
return (_Fetch_add_acquire_1(_Tgt, _Value));
case memory_order_release:
return (_Fetch_add_release_1(_Tgt, _Value));
case memory_order_acq_rel:
case memory_order_seq_cst:
return (_Fetch_add_seq_cst_1(_Tgt, _Value));
default:
_INVALID_MEMORY_ORDER;
return (0);
}
}
inline _Uint1_t _Atomic_fetch_sub_1(
volatile _Uint1_t *_Tgt, _Uint1_t _Value, memory_order _Order)
{ /* subtract _Value from *_Tgt atomically */
return (_Atomic_fetch_add_1(_Tgt, 0 - _Value, _Order));
}
/* _Atomic_fetch_and_1 */
inline _Uint1_t _Fetch_and_seq_cst_1(volatile _Uint1_t *_Tgt, _Uint1_t _Value)
{ /* and _Value with *_Tgt atomically with
sequentially consistent memory order */
return (_INTRIN_SEQ_CST(_InterlockedAnd8)((volatile char *)_Tgt, _Value));
}
inline _Uint1_t _Fetch_and_relaxed_1(volatile _Uint1_t *_Tgt, _Uint1_t _Value)
{ /* and _Value with *_Tgt atomically with
relaxed memory order */
return (_INTRIN_RELAXED(_InterlockedAnd8)((volatile char *)_Tgt, _Value));
}
inline _Uint1_t _Fetch_and_acquire_1(volatile _Uint1_t *_Tgt, _Uint1_t _Value)
{ /* and _Value with *_Tgt atomically with
acquire memory order */
return (_INTRIN_ACQUIRE(_InterlockedAnd8)((volatile char *)_Tgt, _Value));
}
inline _Uint1_t _Fetch_and_release_1(volatile _Uint1_t *_Tgt, _Uint1_t _Value)
{ /* and _Value with *_Tgt atomically with
release memory order */
return (_INTRIN_RELEASE(_InterlockedAnd8)((volatile char *)_Tgt, _Value));
}
inline _Uint1_t _Atomic_fetch_and_1(
volatile _Uint1_t *_Tgt, _Uint1_t _Value, memory_order _Order)
{ /* and _Value with *_Tgt atomically */
switch (_Order)
{
case memory_order_relaxed:
return (_Fetch_and_relaxed_1(_Tgt, _Value));
case memory_order_consume:
case memory_order_acquire:
return (_Fetch_and_acquire_1(_Tgt, _Value));
case memory_order_release:
return (_Fetch_and_release_1(_Tgt, _Value));
case memory_order_acq_rel:
case memory_order_seq_cst:
return (_Fetch_and_seq_cst_1(_Tgt, _Value));
default:
_INVALID_MEMORY_ORDER;
return (0);
}
}
/* _Atomic_fetch_or_1 */
inline _Uint1_t _Fetch_or_seq_cst_1(volatile _Uint1_t *_Tgt, _Uint1_t _Value)
{ /* or _Value with *_Tgt atomically with
sequentially consistent memory order */
return (_INTRIN_SEQ_CST(_InterlockedOr8)((volatile char *)_Tgt, _Value));
}
inline _Uint1_t _Fetch_or_relaxed_1(volatile _Uint1_t *_Tgt, _Uint1_t _Value)
{ /* or _Value with *_Tgt atomically with
relaxed memory order */
return (_INTRIN_RELAXED(_InterlockedOr8)((volatile char *)_Tgt, _Value));
}
inline _Uint1_t _Fetch_or_acquire_1(volatile _Uint1_t *_Tgt, _Uint1_t _Value)
{ /* or _Value with *_Tgt atomically with
acquire memory order */
return (_INTRIN_ACQUIRE(_InterlockedOr8)((volatile char *)_Tgt, _Value));
}
inline _Uint1_t _Fetch_or_release_1(volatile _Uint1_t *_Tgt, _Uint1_t _Value)
{ /* or _Value with *_Tgt atomically with
release memory order */
return (_INTRIN_RELEASE(_InterlockedOr8)((volatile char *)_Tgt, _Value));
}
inline _Uint1_t _Atomic_fetch_or_1(
volatile _Uint1_t *_Tgt, _Uint1_t _Value, memory_order _Order)
{ /* or _Value with *_Tgt atomically */
switch (_Order)
{
case memory_order_relaxed:
return (_Fetch_or_relaxed_1(_Tgt, _Value));
case memory_order_consume:
case memory_order_acquire:
return (_Fetch_or_acquire_1(_Tgt, _Value));
case memory_order_release:
return (_Fetch_or_release_1(_Tgt, _Value));
case memory_order_acq_rel:
case memory_order_seq_cst:
return (_Fetch_or_seq_cst_1(_Tgt, _Value));
default:
_INVALID_MEMORY_ORDER;
return (0);
}
}
/* _Atomic_fetch_xor_1 */
inline _Uint1_t _Fetch_xor_seq_cst_1(volatile _Uint1_t *_Tgt, _Uint1_t _Value)
{ /* xor _Value with *_Tgt atomically with
sequentially consistent memory order */
return (_INTRIN_SEQ_CST(_InterlockedXor8)((volatile char *)_Tgt, _Value));
}
inline _Uint1_t _Fetch_xor_relaxed_1(volatile _Uint1_t *_Tgt, _Uint1_t _Value)
{ /* xor _Value with *_Tgt atomically with
relaxed memory order */
return (_INTRIN_RELAXED(_InterlockedXor8)((volatile char *)_Tgt, _Value));
}
inline _Uint1_t _Fetch_xor_acquire_1(volatile _Uint1_t *_Tgt, _Uint1_t _Value)
{ /* xor _Value with *_Tgt atomically with
acquire memory order */
return (_INTRIN_ACQUIRE(_InterlockedXor8)((volatile char *)_Tgt, _Value));
}
inline _Uint1_t _Fetch_xor_release_1(volatile _Uint1_t *_Tgt, _Uint1_t _Value)
{ /* xor _Value with *_Tgt atomically with
release memory order */
return (_INTRIN_RELEASE(_InterlockedXor8)((volatile char *)_Tgt, _Value));
}
inline _Uint1_t _Atomic_fetch_xor_1(
volatile _Uint1_t *_Tgt, _Uint1_t _Value, memory_order _Order)
{ /* xor _Value with *_Tgt atomically */
switch (_Order)
{
case memory_order_relaxed:
return (_Fetch_xor_relaxed_1(_Tgt, _Value));
case memory_order_consume:
case memory_order_acquire:
return (_Fetch_xor_acquire_1(_Tgt, _Value));
case memory_order_release:
return (_Fetch_xor_release_1(_Tgt, _Value));
case memory_order_acq_rel:
case memory_order_seq_cst:
return (_Fetch_xor_seq_cst_1(_Tgt, _Value));
default:
_INVALID_MEMORY_ORDER;
return (0);
}
}
/* _Atomic_store_2 */
inline void _Store_relaxed_2(volatile _Uint2_t *_Tgt, _Uint2_t _Value)
{ /* store _Value atomically with relaxed memory order */
#if defined(_M_ARM)
__iso_volatile_store16((volatile short *)_Tgt, _Value);
#else
*_Tgt = _Value;
#endif
}
inline void _Store_release_2(volatile _Uint2_t *_Tgt, _Uint2_t _Value)
{ /* store _Value atomically with release memory order */
#if defined(_M_ARM)
_Memory_barrier();
__iso_volatile_store16((volatile short *)_Tgt, _Value);
#else
_Compiler_barrier();
*_Tgt = _Value;
#endif
}
inline void _Store_seq_cst_2(volatile _Uint2_t *_Tgt, _Uint2_t _Value)
{ /* store _Value atomically with
sequentially consistent memory order */
#if defined(_M_ARM)
_Memory_barrier();
__iso_volatile_store16((volatile short *)_Tgt, _Value);
_Memory_barrier();
#else
_INTRIN_SEQ_CST(_InterlockedExchange16)((volatile short *)_Tgt, _Value);
#endif
}
inline void _Atomic_store_2(
volatile _Uint2_t *_Tgt, _Uint2_t _Value, memory_order _Order)
{ /* store _Value atomically */
switch (_Order)
{
case memory_order_relaxed:
_Store_relaxed_2(_Tgt, _Value);
break;
case memory_order_release:
_Store_release_2(_Tgt, _Value);
break;
case memory_order_seq_cst:
_Store_seq_cst_2(_Tgt, _Value);
break;
default:
_INVALID_MEMORY_ORDER;
break;
}
}
/* _Atomic_load_2 */
inline _Uint2_t _Load_seq_cst_2(volatile _Uint2_t *_Tgt)
{ /* load from *_Tgt atomically with
sequentially consistent memory order */
_Uint2_t _Value;
#if defined(_M_ARM)
_Value = __iso_volatile_load16((volatile short *)_Tgt);
_Memory_barrier();
#else
_Value = *_Tgt;
_Compiler_barrier();
#endif
return (_Value);
}
inline _Uint2_t _Load_relaxed_2(volatile _Uint2_t *_Tgt)
{ /* load from *_Tgt atomically with
relaxed memory order */
_Uint2_t _Value;
#if defined(_M_ARM)
_Value = __iso_volatile_load16((volatile short *)_Tgt);
#else
_Value = *_Tgt;
#endif
return (_Value);
}
inline _Uint2_t _Load_acquire_2(volatile _Uint2_t *_Tgt)
{ /* load from *_Tgt atomically with
acquire memory order */
return (_Load_seq_cst_2(_Tgt));
}
inline _Uint2_t _Atomic_load_2(
volatile _Uint2_t *_Tgt, memory_order _Order)
{ /* load from *_Tgt atomically */
switch (_Order)
{
case memory_order_relaxed:
return (_Load_relaxed_2(_Tgt));
case memory_order_consume:
case memory_order_acquire:
return (_Load_acquire_2(_Tgt));
case memory_order_seq_cst:
return (_Load_seq_cst_2(_Tgt));
default:
_INVALID_MEMORY_ORDER;
return (0);
}
}
/* _Atomic_exchange_2 */
inline _Uint2_t _Exchange_seq_cst_2(volatile _Uint2_t *_Tgt, _Uint2_t _Value)
{ /* exchange _Value and *_Tgt atomically with
sequentially consistent memory order */
return (_INTRIN_SEQ_CST(_InterlockedExchange16)((volatile short *)_Tgt, _Value));
}
inline _Uint2_t _Exchange_relaxed_2(volatile _Uint2_t *_Tgt, _Uint2_t _Value)
{ /* exchange _Value and *_Tgt atomically with
relaxed memory order */
return (_INTRIN_RELAXED(_InterlockedExchange16)((volatile short *)_Tgt, _Value));
}
inline _Uint2_t _Exchange_acquire_2(volatile _Uint2_t *_Tgt, _Uint2_t _Value)
{ /* exchange _Value and *_Tgt atomically with
acquire memory order */
return (_INTRIN_ACQUIRE(_InterlockedExchange16)((volatile short *)_Tgt, _Value));
}
inline _Uint2_t _Exchange_release_2(volatile _Uint2_t *_Tgt, _Uint2_t _Value)
{ /* exchange _Value and *_Tgt atomically with
release memory order */
return (_INTRIN_RELEASE(_InterlockedExchange16)((volatile short *)_Tgt, _Value));
}
inline _Uint2_t _Atomic_exchange_2(
volatile _Uint2_t *_Tgt, _Uint2_t _Value, memory_order _Order)
{ /* exchange _Value and *_Tgt atomically */
switch (_Order)
{
case memory_order_relaxed:
return (_Exchange_relaxed_2(_Tgt, _Value));
case memory_order_consume:
case memory_order_acquire:
return (_Exchange_acquire_2(_Tgt, _Value));
case memory_order_release:
return (_Exchange_release_2(_Tgt, _Value));
case memory_order_acq_rel:
case memory_order_seq_cst:
return (_Exchange_seq_cst_2(_Tgt, _Value));
default:
_INVALID_MEMORY_ORDER;
return (0);
}
}
/* _Atomic_compare_exchange_weak_2, _Atomic_compare_exchange_strong_2 */
inline int _Compare_exchange_seq_cst_2(volatile _Uint2_t *_Tgt,
_Uint2_t *_Exp, _Uint2_t _Value)
{ /* compare and exchange values atomically with
sequentially consistent memory order */
int _Res;
_Uint2_t _Prev = _INTRIN_SEQ_CST(_InterlockedCompareExchange16)((volatile short *)_Tgt,
_Value, *_Exp);
if (_Prev == *_Exp)
_Res = 1;
else
{ /* copy old value */
_Res = 0;
*_Exp = _Prev;
}
return (_Res);
}
inline int _Compare_exchange_relaxed_2(volatile _Uint2_t *_Tgt,
_Uint2_t *_Exp, _Uint2_t _Value)
{ /* compare and exchange values atomically with
relaxed memory order */
int _Res;
_Uint2_t _Prev = _INTRIN_RELAXED(_InterlockedCompareExchange16)((volatile short *)_Tgt,
_Value, *_Exp);
if (_Prev == *_Exp)
_Res = 1;
else
{ /* copy old value */
_Res = 0;
*_Exp = _Prev;
}
return (_Res);
}
inline int _Compare_exchange_acquire_2(volatile _Uint2_t *_Tgt,
_Uint2_t *_Exp, _Uint2_t _Value)
{ /* compare and exchange values atomically with
acquire memory order */
int _Res;
_Uint2_t _Prev = _INTRIN_ACQUIRE(_InterlockedCompareExchange16)((volatile short *)_Tgt,
_Value, *_Exp);
if (_Prev == *_Exp)
_Res = 1;
else
{ /* copy old value */
_Res = 0;
*_Exp = _Prev;
}
return (_Res);
}
inline int _Compare_exchange_release_2(volatile _Uint2_t *_Tgt,
_Uint2_t *_Exp, _Uint2_t _Value)
{ /* compare and exchange values atomically with
release memory order */
int _Res;
_Uint2_t _Prev = _INTRIN_RELEASE(_InterlockedCompareExchange16)((volatile short *)_Tgt,
_Value, *_Exp);
if (_Prev == *_Exp)
_Res = 1;
else
{ /* copy old value */
_Res = 0;
*_Exp = _Prev;
}
return (_Res);
}
inline int _Atomic_compare_exchange_strong_2(
volatile _Uint2_t *_Tgt, _Uint2_t *_Exp, _Uint2_t _Value,
memory_order _Order1, memory_order _Order2)
{ /* compare and exchange values atomically */
_Validate_compare_exchange_memory_order(_Order1, _Order2);
switch (_Memory_order_upper_bound(_Order1, _Order2))
{
case memory_order_relaxed:
return (_Compare_exchange_relaxed_2(_Tgt, _Exp, _Value));
case memory_order_consume:
case memory_order_acquire:
return (_Compare_exchange_acquire_2(_Tgt, _Exp, _Value));
case memory_order_release:
return (_Compare_exchange_release_2(_Tgt, _Exp, _Value));
case memory_order_acq_rel:
case memory_order_seq_cst:
return (_Compare_exchange_seq_cst_2(_Tgt, _Exp, _Value));
default:
_INVALID_MEMORY_ORDER;
return (0);
}
}
inline int _Atomic_compare_exchange_weak_2(
volatile _Uint2_t *_Tgt, _Uint2_t *_Exp, _Uint2_t _Value,
memory_order _Order1, memory_order _Order2)
{ /* compare and exchange values atomically */
/* No weak compare-exchange is currently available,
even for ARM, so fall back to strong */
return (_Atomic_compare_exchange_strong_2(_Tgt, _Exp, _Value,
_Order1, _Order2));
}
/* _Atomic_fetch_add_2, _Atomic_fetch_sub_2 */
inline _Uint2_t _Fetch_add_seq_cst_2(volatile _Uint2_t *_Tgt, _Uint2_t _Value)
{ /* add _Value to *_Tgt atomically with
sequentially consistent memory order */
return (_INTRIN_SEQ_CST(_InterlockedExchangeAdd16)((volatile short *)_Tgt, _Value));
}
inline _Uint2_t _Fetch_add_relaxed_2(volatile _Uint2_t *_Tgt, _Uint2_t _Value)
{ /* add _Value to *_Tgt atomically with
relaxed memory order */
return (_INTRIN_RELAXED(_InterlockedExchangeAdd16)((volatile short *)_Tgt, _Value));
}
inline _Uint2_t _Fetch_add_acquire_2(volatile _Uint2_t *_Tgt, _Uint2_t _Value)
{ /* add _Value to *_Tgt atomically with
acquire memory order */
return (_INTRIN_ACQUIRE(_InterlockedExchangeAdd16)((volatile short *)_Tgt, _Value));
}
inline _Uint2_t _Fetch_add_release_2(volatile _Uint2_t *_Tgt, _Uint2_t _Value)
{ /* add _Value to *_Tgt atomically with
release memory order */
return (_INTRIN_RELEASE(_InterlockedExchangeAdd16)((volatile short *)_Tgt, _Value));
}
inline _Uint2_t _Atomic_fetch_add_2(
volatile _Uint2_t *_Tgt, _Uint2_t _Value, memory_order _Order)
{ /* add _Value to *_Tgt atomically */
switch (_Order)
{
case memory_order_relaxed:
return (_Fetch_add_relaxed_2(_Tgt, _Value));
case memory_order_consume:
case memory_order_acquire:
return (_Fetch_add_acquire_2(_Tgt, _Value));
case memory_order_release:
return (_Fetch_add_release_2(_Tgt, _Value));
case memory_order_acq_rel:
case memory_order_seq_cst:
return (_Fetch_add_seq_cst_2(_Tgt, _Value));
default:
_INVALID_MEMORY_ORDER;
return (0);
}
}
inline _Uint2_t _Atomic_fetch_sub_2(
volatile _Uint2_t *_Tgt, _Uint2_t _Value, memory_order _Order)
{ /* subtract _Value from *_Tgt atomically */
return (_Atomic_fetch_add_2(_Tgt, 0 - _Value, _Order));
}
/* _Atomic_fetch_and_2 */
inline _Uint2_t _Fetch_and_seq_cst_2(volatile _Uint2_t *_Tgt, _Uint2_t _Value)
{ /* and _Value with *_Tgt atomically with
sequentially consistent memory order */
return (_INTRIN_SEQ_CST(_InterlockedAnd16)((volatile short *)_Tgt, _Value));
}
inline _Uint2_t _Fetch_and_relaxed_2(volatile _Uint2_t *_Tgt, _Uint2_t _Value)
{ /* and _Value with *_Tgt atomically with
relaxed memory order */
return (_INTRIN_RELAXED(_InterlockedAnd16)((volatile short *)_Tgt, _Value));
}
inline _Uint2_t _Fetch_and_acquire_2(volatile _Uint2_t *_Tgt, _Uint2_t _Value)
{ /* and _Value with *_Tgt atomically with
acquire memory order */
return (_INTRIN_ACQUIRE(_InterlockedAnd16)((volatile short *)_Tgt, _Value));
}
inline _Uint2_t _Fetch_and_release_2(volatile _Uint2_t *_Tgt, _Uint2_t _Value)
{ /* and _Value with *_Tgt atomically with
release memory order */
return (_INTRIN_RELEASE(_InterlockedAnd16)((volatile short *)_Tgt, _Value));
}
inline _Uint2_t _Atomic_fetch_and_2(
volatile _Uint2_t *_Tgt, _Uint2_t _Value, memory_order _Order)
{ /* and _Value with *_Tgt atomically */
switch (_Order)
{
case memory_order_relaxed:
return (_Fetch_and_relaxed_2(_Tgt, _Value));
case memory_order_consume:
case memory_order_acquire:
return (_Fetch_and_acquire_2(_Tgt, _Value));
case memory_order_release:
return (_Fetch_and_release_2(_Tgt, _Value));
case memory_order_acq_rel:
case memory_order_seq_cst:
return (_Fetch_and_seq_cst_2(_Tgt, _Value));
default:
_INVALID_MEMORY_ORDER;
return (0);
}
}
/* _Atomic_fetch_or_2 */
inline _Uint2_t _Fetch_or_seq_cst_2(volatile _Uint2_t *_Tgt, _Uint2_t _Value)
{ /* or _Value with *_Tgt atomically with
sequentially consistent memory order */
return (_INTRIN_SEQ_CST(_InterlockedOr16)((volatile short *)_Tgt, _Value));
}
inline _Uint2_t _Fetch_or_relaxed_2(volatile _Uint2_t *_Tgt, _Uint2_t _Value)
{ /* or _Value with *_Tgt atomically with
relaxed memory order */
return (_INTRIN_RELAXED(_InterlockedOr16)((volatile short *)_Tgt, _Value));
}
inline _Uint2_t _Fetch_or_acquire_2(volatile _Uint2_t *_Tgt, _Uint2_t _Value)
{ /* or _Value with *_Tgt atomically with
acquire memory order */
return (_INTRIN_ACQUIRE(_InterlockedOr16)((volatile short *)_Tgt, _Value));
}
inline _Uint2_t _Fetch_or_release_2(volatile _Uint2_t *_Tgt, _Uint2_t _Value)
{ /* or _Value with *_Tgt atomically with
release memory order */
return (_INTRIN_RELEASE(_InterlockedOr16)((volatile short *)_Tgt, _Value));
}
inline _Uint2_t _Atomic_fetch_or_2(
volatile _Uint2_t *_Tgt, _Uint2_t _Value, memory_order _Order)
{ /* or _Value with *_Tgt atomically */
switch (_Order)
{
case memory_order_relaxed:
return (_Fetch_or_relaxed_2(_Tgt, _Value));
case memory_order_consume:
case memory_order_acquire:
return (_Fetch_or_acquire_2(_Tgt, _Value));
case memory_order_release:
return (_Fetch_or_release_2(_Tgt, _Value));
case memory_order_acq_rel:
case memory_order_seq_cst:
return (_Fetch_or_seq_cst_2(_Tgt, _Value));
default:
_INVALID_MEMORY_ORDER;
return (0);
}
}
/* _Atomic_fetch_xor_2 */
inline _Uint2_t _Fetch_xor_seq_cst_2(volatile _Uint2_t *_Tgt, _Uint2_t _Value)
{ /* xor _Value with *_Tgt atomically with
sequentially consistent memory order */
return (_INTRIN_SEQ_CST(_InterlockedXor16)((volatile short *)_Tgt, _Value));
}
inline _Uint2_t _Fetch_xor_relaxed_2(volatile _Uint2_t *_Tgt, _Uint2_t _Value)
{ /* xor _Value with *_Tgt atomically with
relaxed memory order */
return (_INTRIN_RELAXED(_InterlockedXor16)((volatile short *)_Tgt, _Value));
}
inline _Uint2_t _Fetch_xor_acquire_2(volatile _Uint2_t *_Tgt, _Uint2_t _Value)
{ /* xor _Value with *_Tgt atomically with
acquire memory order */
return (_INTRIN_ACQUIRE(_InterlockedXor16)((volatile short *)_Tgt, _Value));
}
inline _Uint2_t _Fetch_xor_release_2(volatile _Uint2_t *_Tgt, _Uint2_t _Value)
{ /* xor _Value with *_Tgt atomically with
release memory order */
return (_INTRIN_RELEASE(_InterlockedXor16)((volatile short *)_Tgt, _Value));
}
inline _Uint2_t _Atomic_fetch_xor_2(
volatile _Uint2_t *_Tgt, _Uint2_t _Value, memory_order _Order)
{ /* xor _Value with *_Tgt atomically */
switch (_Order)
{
case memory_order_relaxed:
return (_Fetch_xor_relaxed_2(_Tgt, _Value));
case memory_order_consume:
case memory_order_acquire:
return (_Fetch_xor_acquire_2(_Tgt, _Value));
case memory_order_release:
return (_Fetch_xor_release_2(_Tgt, _Value));
case memory_order_acq_rel:
case memory_order_seq_cst:
return (_Fetch_xor_seq_cst_2(_Tgt, _Value));
default:
_INVALID_MEMORY_ORDER;
return (0);
}
}
/* _Atomic_store_4 */
inline void _Store_relaxed_4(volatile _Uint4_t *_Tgt, _Uint4_t _Value)
{ /* store _Value atomically with relaxed memory order */
#if defined(_M_ARM)
__iso_volatile_store32((volatile int *)_Tgt, _Value);
#else
*_Tgt = _Value;
#endif
}
inline void _Store_release_4(volatile _Uint4_t *_Tgt, _Uint4_t _Value)
{ /* store _Value atomically with release memory order */
#if defined(_M_ARM)
_Memory_barrier();
__iso_volatile_store32((volatile int *)_Tgt, _Value);
#else
_Compiler_barrier();
*_Tgt = _Value;
#endif
}
inline void _Store_seq_cst_4(volatile _Uint4_t *_Tgt, _Uint4_t _Value)
{ /* store _Value atomically with
sequentially consistent memory order */
#if defined(_M_ARM)
_Memory_barrier();
__iso_volatile_store32((volatile int *)_Tgt, _Value);
_Memory_barrier();
#else
_INTRIN_SEQ_CST(_InterlockedExchange)((volatile long *)_Tgt, _Value);
#endif
}
inline void _Atomic_store_4(
volatile _Uint4_t *_Tgt, _Uint4_t _Value, memory_order _Order)
{ /* store _Value atomically */
switch (_Order)
{
case memory_order_relaxed:
_Store_relaxed_4(_Tgt, _Value);
break;
case memory_order_release:
_Store_release_4(_Tgt, _Value);
break;
case memory_order_seq_cst:
_Store_seq_cst_4(_Tgt, _Value);
break;
default:
_INVALID_MEMORY_ORDER;
break;
}
}
/* _Atomic_load_4 */
inline _Uint4_t _Load_seq_cst_4(volatile _Uint4_t *_Tgt)
{ /* load from *_Tgt atomically with
sequentially consistent memory order */
_Uint4_t _Value;
#if defined(_M_ARM)
_Value = __iso_volatile_load32((volatile int *)_Tgt);
_Memory_barrier();
#else
_Value = *_Tgt;
_Compiler_barrier();
#endif
return (_Value);
}
inline _Uint4_t _Load_relaxed_4(volatile _Uint4_t *_Tgt)
{ /* load from *_Tgt atomically with
relaxed memory order */
_Uint4_t _Value;
#if defined(_M_ARM)
_Value = __iso_volatile_load32((volatile int *)_Tgt);
#else
_Value = *_Tgt;
#endif
return (_Value);
}
inline _Uint4_t _Load_acquire_4(volatile _Uint4_t *_Tgt)
{ /* load from *_Tgt atomically with
acquire memory order */
return (_Load_seq_cst_4(_Tgt));
}
inline _Uint4_t _Atomic_load_4(
volatile _Uint4_t *_Tgt, memory_order _Order)
{ /* load from *_Tgt atomically */
switch (_Order)
{
case memory_order_relaxed:
return (_Load_relaxed_4(_Tgt));
case memory_order_consume:
case memory_order_acquire:
return (_Load_acquire_4(_Tgt));
case memory_order_seq_cst:
return (_Load_seq_cst_4(_Tgt));
default:
_INVALID_MEMORY_ORDER;
return (0);
}
}
/* _Atomic_exchange_4 */
inline _Uint4_t _Exchange_seq_cst_4(volatile _Uint4_t *_Tgt, _Uint4_t _Value)
{ /* exchange _Value and *_Tgt atomically with
sequentially consistent memory order */
return (_INTRIN_SEQ_CST(_InterlockedExchange)((volatile long *)_Tgt, _Value));
}
inline _Uint4_t _Exchange_relaxed_4(volatile _Uint4_t *_Tgt, _Uint4_t _Value)
{ /* exchange _Value and *_Tgt atomically with
relaxed memory order */
return (_INTRIN_RELAXED(_InterlockedExchange)((volatile long *)_Tgt, _Value));
}
inline _Uint4_t _Exchange_acquire_4(volatile _Uint4_t *_Tgt, _Uint4_t _Value)
{ /* exchange _Value and *_Tgt atomically with
acquire memory order */
return (_INTRIN_ACQUIRE(_InterlockedExchange)((volatile long *)_Tgt, _Value));
}
inline _Uint4_t _Exchange_release_4(volatile _Uint4_t *_Tgt, _Uint4_t _Value)
{ /* exchange _Value and *_Tgt atomically with
release memory order */
return (_INTRIN_RELEASE(_InterlockedExchange)((volatile long *)_Tgt, _Value));
}
inline _Uint4_t _Atomic_exchange_4(
volatile _Uint4_t *_Tgt, _Uint4_t _Value, memory_order _Order)
{ /* exchange _Value and *_Tgt atomically */
switch (_Order)
{
case memory_order_relaxed:
return (_Exchange_relaxed_4(_Tgt, _Value));
case memory_order_consume:
case memory_order_acquire:
return (_Exchange_acquire_4(_Tgt, _Value));
case memory_order_release:
return (_Exchange_release_4(_Tgt, _Value));
case memory_order_acq_rel:
case memory_order_seq_cst:
return (_Exchange_seq_cst_4(_Tgt, _Value));
default:
_INVALID_MEMORY_ORDER;
return (0);
}
}
/* _Atomic_compare_exchange_weak_4, _Atomic_compare_exchange_strong_4 */
inline int _Compare_exchange_seq_cst_4(volatile _Uint4_t *_Tgt,
_Uint4_t *_Exp, _Uint4_t _Value)
{ /* compare and exchange values atomically with
sequentially consistent memory order */
int _Res;
_Uint4_t _Prev = _INTRIN_SEQ_CST(_InterlockedCompareExchange)((volatile long *)_Tgt,
_Value, *_Exp);
if (_Prev == *_Exp)
_Res = 1;
else
{ /* copy old value */
_Res = 0;
*_Exp = _Prev;
}
return (_Res);
}
inline int _Compare_exchange_relaxed_4(volatile _Uint4_t *_Tgt,
_Uint4_t *_Exp, _Uint4_t _Value)
{ /* compare and exchange values atomically with
relaxed memory order */
int _Res;
_Uint4_t _Prev = _INTRIN_RELAXED(_InterlockedCompareExchange)((volatile long *)_Tgt,
_Value, *_Exp);
if (_Prev == *_Exp)
_Res = 1;
else
{ /* copy old value */
_Res = 0;
*_Exp = _Prev;
}
return (_Res);
}
inline int _Compare_exchange_acquire_4(volatile _Uint4_t *_Tgt,
_Uint4_t *_Exp, _Uint4_t _Value)
{ /* compare and exchange values atomically with
acquire memory order */
int _Res;
_Uint4_t _Prev = _INTRIN_ACQUIRE(_InterlockedCompareExchange)((volatile long *)_Tgt,
_Value, *_Exp);
if (_Prev == *_Exp)
_Res = 1;
else
{ /* copy old value */
_Res = 0;
*_Exp = _Prev;
}
return (_Res);
}
inline int _Compare_exchange_release_4(volatile _Uint4_t *_Tgt,
_Uint4_t *_Exp, _Uint4_t _Value)
{ /* compare and exchange values atomically with
release memory order */
int _Res;
_Uint4_t _Prev = _INTRIN_RELEASE(_InterlockedCompareExchange)((volatile long *)_Tgt,
_Value, *_Exp);
if (_Prev == *_Exp)
_Res = 1;
else
{ /* copy old value */
_Res = 0;
*_Exp = _Prev;
}
return (_Res);
}
inline int _Atomic_compare_exchange_strong_4(
volatile _Uint4_t *_Tgt, _Uint4_t *_Exp, _Uint4_t _Value,
memory_order _Order1, memory_order _Order2)
{ /* compare and exchange values atomically */
_Validate_compare_exchange_memory_order(_Order1, _Order2);
switch (_Memory_order_upper_bound(_Order1, _Order2))
{
case memory_order_relaxed:
return (_Compare_exchange_relaxed_4(_Tgt, _Exp, _Value));
case memory_order_consume:
case memory_order_acquire:
return (_Compare_exchange_acquire_4(_Tgt, _Exp, _Value));
case memory_order_release:
return (_Compare_exchange_release_4(_Tgt, _Exp, _Value));
case memory_order_acq_rel:
case memory_order_seq_cst:
return (_Compare_exchange_seq_cst_4(_Tgt, _Exp, _Value));
default:
_INVALID_MEMORY_ORDER;
return (0);
}
}
inline int _Atomic_compare_exchange_weak_4(
volatile _Uint4_t *_Tgt, _Uint4_t *_Exp, _Uint4_t _Value,
memory_order _Order1, memory_order _Order2)
{ /* compare and exchange values atomically */
/* No weak compare-exchange is currently available,
even for ARM, so fall back to strong */
return (_Atomic_compare_exchange_strong_4(_Tgt, _Exp, _Value,
_Order1, _Order2));
}
/* _Atomic_fetch_add_4, _Atomic_fetch_sub_4 */
inline _Uint4_t _Fetch_add_seq_cst_4(volatile _Uint4_t *_Tgt, _Uint4_t _Value)
{ /* add _Value to *_Tgt atomically with
sequentially consistent memory order */
return (_INTRIN_SEQ_CST(_InterlockedExchangeAdd)((volatile long *)_Tgt, _Value));
}
inline _Uint4_t _Fetch_add_relaxed_4(volatile _Uint4_t *_Tgt, _Uint4_t _Value)
{ /* add _Value to *_Tgt atomically with
relaxed memory order */
return (_INTRIN_RELAXED(_InterlockedExchangeAdd)((volatile long *)_Tgt, _Value));
}
inline _Uint4_t _Fetch_add_acquire_4(volatile _Uint4_t *_Tgt, _Uint4_t _Value)
{ /* add _Value to *_Tgt atomically with
acquire memory order */
return (_INTRIN_ACQUIRE(_InterlockedExchangeAdd)((volatile long *)_Tgt, _Value));
}
inline _Uint4_t _Fetch_add_release_4(volatile _Uint4_t *_Tgt, _Uint4_t _Value)
{ /* add _Value to *_Tgt atomically with
release memory order */
return (_INTRIN_RELEASE(_InterlockedExchangeAdd)((volatile long *)_Tgt, _Value));
}
inline _Uint4_t _Atomic_fetch_add_4(
volatile _Uint4_t *_Tgt, _Uint4_t _Value, memory_order _Order)
{ /* add _Value to *_Tgt atomically */
switch (_Order)
{
case memory_order_relaxed:
return (_Fetch_add_relaxed_4(_Tgt, _Value));
case memory_order_consume:
case memory_order_acquire:
return (_Fetch_add_acquire_4(_Tgt, _Value));
case memory_order_release:
return (_Fetch_add_release_4(_Tgt, _Value));
case memory_order_acq_rel:
case memory_order_seq_cst:
return (_Fetch_add_seq_cst_4(_Tgt, _Value));
default:
_INVALID_MEMORY_ORDER;
return (0);
}
}
inline _Uint4_t _Atomic_fetch_sub_4(
volatile _Uint4_t *_Tgt, _Uint4_t _Value, memory_order _Order)
{ /* subtract _Value from *_Tgt atomically */
return (_Atomic_fetch_add_4(_Tgt, 0 - _Value, _Order));
}
/* _Atomic_fetch_and_4 */
inline _Uint4_t _Fetch_and_seq_cst_4(volatile _Uint4_t *_Tgt, _Uint4_t _Value)
{ /* and _Value with *_Tgt atomically with
sequentially consistent memory order */
return (_INTRIN_SEQ_CST(_InterlockedAnd)((volatile long *)_Tgt, _Value));
}
inline _Uint4_t _Fetch_and_relaxed_4(volatile _Uint4_t *_Tgt, _Uint4_t _Value)
{ /* and _Value with *_Tgt atomically with
relaxed memory order */
return (_INTRIN_RELAXED(_InterlockedAnd)((volatile long *)_Tgt, _Value));
}
inline _Uint4_t _Fetch_and_acquire_4(volatile _Uint4_t *_Tgt, _Uint4_t _Value)
{ /* and _Value with *_Tgt atomically with
acquire memory order */
return (_INTRIN_ACQUIRE(_InterlockedAnd)((volatile long *)_Tgt, _Value));
}
inline _Uint4_t _Fetch_and_release_4(volatile _Uint4_t *_Tgt, _Uint4_t _Value)
{ /* and _Value with *_Tgt atomically with
release memory order */
return (_INTRIN_RELEASE(_InterlockedAnd)((volatile long *)_Tgt, _Value));
}
inline _Uint4_t _Atomic_fetch_and_4(
volatile _Uint4_t *_Tgt, _Uint4_t _Value, memory_order _Order)
{ /* and _Value with *_Tgt atomically */
switch (_Order)
{
case memory_order_relaxed:
return (_Fetch_and_relaxed_4(_Tgt, _Value));
case memory_order_consume:
case memory_order_acquire:
return (_Fetch_and_acquire_4(_Tgt, _Value));
case memory_order_release:
return (_Fetch_and_release_4(_Tgt, _Value));
case memory_order_acq_rel:
case memory_order_seq_cst:
return (_Fetch_and_seq_cst_4(_Tgt, _Value));
default:
_INVALID_MEMORY_ORDER;
return (0);
}
}
/* _Atomic_fetch_or_4 */
inline _Uint4_t _Fetch_or_seq_cst_4(volatile _Uint4_t *_Tgt, _Uint4_t _Value)
{ /* or _Value with *_Tgt atomically with
sequentially consistent memory order */
return (_INTRIN_SEQ_CST(_InterlockedOr)((volatile long *)_Tgt, _Value));
}
inline _Uint4_t _Fetch_or_relaxed_4(volatile _Uint4_t *_Tgt, _Uint4_t _Value)
{ /* or _Value with *_Tgt atomically with
relaxed memory order */
return (_INTRIN_RELAXED(_InterlockedOr)((volatile long *)_Tgt, _Value));
}
inline _Uint4_t _Fetch_or_acquire_4(volatile _Uint4_t *_Tgt, _Uint4_t _Value)
{ /* or _Value with *_Tgt atomically with
acquire memory order */
return (_INTRIN_ACQUIRE(_InterlockedOr)((volatile long *)_Tgt, _Value));
}
inline _Uint4_t _Fetch_or_release_4(volatile _Uint4_t *_Tgt, _Uint4_t _Value)
{ /* or _Value with *_Tgt atomically with
release memory order */
return (_INTRIN_RELEASE(_InterlockedOr)((volatile long *)_Tgt, _Value));
}
inline _Uint4_t _Atomic_fetch_or_4(
volatile _Uint4_t *_Tgt, _Uint4_t _Value, memory_order _Order)
{ /* or _Value with *_Tgt atomically */
switch (_Order)
{
case memory_order_relaxed:
return (_Fetch_or_relaxed_4(_Tgt, _Value));
case memory_order_consume:
case memory_order_acquire:
return (_Fetch_or_acquire_4(_Tgt, _Value));
case memory_order_release:
return (_Fetch_or_release_4(_Tgt, _Value));
case memory_order_acq_rel:
case memory_order_seq_cst:
return (_Fetch_or_seq_cst_4(_Tgt, _Value));
default:
_INVALID_MEMORY_ORDER;
return (0);
}
}
/* _Atomic_fetch_xor_4 */
inline _Uint4_t _Fetch_xor_seq_cst_4(volatile _Uint4_t *_Tgt, _Uint4_t _Value)
{ /* xor _Value with *_Tgt atomically with
sequentially consistent memory order */
return (_INTRIN_SEQ_CST(_InterlockedXor)((volatile long *)_Tgt, _Value));
}
inline _Uint4_t _Fetch_xor_relaxed_4(volatile _Uint4_t *_Tgt, _Uint4_t _Value)
{ /* xor _Value with *_Tgt atomically with
relaxed memory order */
return (_INTRIN_RELAXED(_InterlockedXor)((volatile long *)_Tgt, _Value));
}
inline _Uint4_t _Fetch_xor_acquire_4(volatile _Uint4_t *_Tgt, _Uint4_t _Value)
{ /* xor _Value with *_Tgt atomically with
acquire memory order */
return (_INTRIN_ACQUIRE(_InterlockedXor)((volatile long *)_Tgt, _Value));
}
inline _Uint4_t _Fetch_xor_release_4(volatile _Uint4_t *_Tgt, _Uint4_t _Value)
{ /* xor _Value with *_Tgt atomically with
release memory order */
return (_INTRIN_RELEASE(_InterlockedXor)((volatile long *)_Tgt, _Value));
}
inline _Uint4_t _Atomic_fetch_xor_4(
volatile _Uint4_t *_Tgt, _Uint4_t _Value, memory_order _Order)
{ /* xor _Value with *_Tgt atomically */
switch (_Order)
{
case memory_order_relaxed:
return (_Fetch_xor_relaxed_4(_Tgt, _Value));
case memory_order_consume:
case memory_order_acquire:
return (_Fetch_xor_acquire_4(_Tgt, _Value));
case memory_order_release:
return (_Fetch_xor_release_4(_Tgt, _Value));
case memory_order_acq_rel:
case memory_order_seq_cst:
return (_Fetch_xor_seq_cst_4(_Tgt, _Value));
default:
_INVALID_MEMORY_ORDER;
return (0);
}
}
/* _Atomic_store_8 */
inline void _Store_relaxed_8(volatile _Uint8_t *_Tgt, _Uint8_t _Value)
{ /* store _Value atomically with relaxed memory order */
#if _MS_64
*_Tgt = _Value;
#else
_INTRIN_RELAXED(_InterlockedExchange64)((volatile _LONGLONG *)_Tgt, _Value);
#endif
}
inline void _Store_release_8(volatile _Uint8_t *_Tgt, _Uint8_t _Value)
{ /* store _Value atomically with release memory order */
#if _MS_64
_Compiler_barrier();
*_Tgt = _Value;
#else
_INTRIN_RELEASE(_InterlockedExchange64)((volatile _LONGLONG *)_Tgt, _Value);
#endif
}
inline void _Store_seq_cst_8(volatile _Uint8_t *_Tgt, _Uint8_t _Value)
{ /* store _Value atomically with
sequentially consistent memory order */
_INTRIN_SEQ_CST(_InterlockedExchange64)((volatile _LONGLONG *)_Tgt, _Value);
}
inline void _Atomic_store_8(
volatile _Uint8_t *_Tgt, _Uint8_t _Value, memory_order _Order)
{ /* store _Value atomically */
switch (_Order)
{
case memory_order_relaxed:
_Store_relaxed_8(_Tgt, _Value);
break;
case memory_order_release:
_Store_release_8(_Tgt, _Value);
break;
case memory_order_seq_cst:
_Store_seq_cst_8(_Tgt, _Value);
break;
default:
_INVALID_MEMORY_ORDER;
break;
}
}
/* _Atomic_load_8 */
inline _Uint8_t _Load_seq_cst_8(volatile _Uint8_t *_Tgt)
{ /* load from *_Tgt atomically with
sequentially consistent memory order */
_Uint8_t _Value;
#if _MS_64
_Value = *_Tgt;
_Compiler_barrier();
#elif defined(_M_ARM)
_Value = __ldrexd((volatile _LONGLONG *)_Tgt);
_Memory_barrier();
#else
_Value = _InterlockedOr64((volatile _LONGLONG *)_Tgt, 0);
#endif
return (_Value);
}
inline _Uint8_t _Load_relaxed_8(volatile _Uint8_t *_Tgt)
{ /* load from *_Tgt atomically with
relaxed memory order */
_Uint8_t _Value;
#if _MS_64
_Value = *_Tgt;
#elif defined(_M_ARM)
_Value = __ldrexd((volatile _LONGLONG *)_Tgt);
#else
_Value = _InterlockedOr64((volatile _LONGLONG *)_Tgt, 0);
#endif
return (_Value);
}
inline _Uint8_t _Load_acquire_8(volatile _Uint8_t *_Tgt)
{ /* load from *_Tgt atomically with
acquire memory order */
return (_Load_seq_cst_8(_Tgt));
}
inline _Uint8_t _Atomic_load_8(
volatile _Uint8_t *_Tgt, memory_order _Order)
{ /* load from *_Tgt atomically */
switch (_Order)
{
case memory_order_relaxed:
return (_Load_relaxed_8(_Tgt));
case memory_order_consume:
case memory_order_acquire:
return (_Load_acquire_8(_Tgt));
case memory_order_seq_cst:
return (_Load_seq_cst_8(_Tgt));
default:
_INVALID_MEMORY_ORDER;
return (0);
}
}
/* _Atomic_exchange_8 */
inline _Uint8_t _Exchange_seq_cst_8(volatile _Uint8_t *_Tgt, _Uint8_t _Value)
{ /* exchange _Value and *_Tgt atomically with
sequentially consistent memory order */
return (_INTRIN_SEQ_CST(_InterlockedExchange64)((volatile _LONGLONG *)_Tgt, _Value));
}
inline _Uint8_t _Exchange_relaxed_8(volatile _Uint8_t *_Tgt, _Uint8_t _Value)
{ /* exchange _Value and *_Tgt atomically with
relaxed memory order */
return (_INTRIN_RELAXED(_InterlockedExchange64)((volatile _LONGLONG *)_Tgt, _Value));
}
inline _Uint8_t _Exchange_acquire_8(volatile _Uint8_t *_Tgt, _Uint8_t _Value)
{ /* exchange _Value and *_Tgt atomically with
acquire memory order */
return (_INTRIN_ACQUIRE(_InterlockedExchange64)((volatile _LONGLONG *)_Tgt, _Value));
}
inline _Uint8_t _Exchange_release_8(volatile _Uint8_t *_Tgt, _Uint8_t _Value)
{ /* exchange _Value and *_Tgt atomically with
release memory order */
return (_INTRIN_RELEASE(_InterlockedExchange64)((volatile _LONGLONG *)_Tgt, _Value));
}
inline _Uint8_t _Atomic_exchange_8(
volatile _Uint8_t *_Tgt, _Uint8_t _Value, memory_order _Order)
{ /* exchange _Value and *_Tgt atomically */
switch (_Order)
{
case memory_order_relaxed:
return (_Exchange_relaxed_8(_Tgt, _Value));
case memory_order_consume:
case memory_order_acquire:
return (_Exchange_acquire_8(_Tgt, _Value));
case memory_order_release:
return (_Exchange_release_8(_Tgt, _Value));
case memory_order_acq_rel:
case memory_order_seq_cst:
return (_Exchange_seq_cst_8(_Tgt, _Value));
default:
_INVALID_MEMORY_ORDER;
return (0);
}
}
/* _Atomic_compare_exchange_weak_8, _Atomic_compare_exchange_strong_8 */
inline int _Compare_exchange_seq_cst_8(volatile _Uint8_t *_Tgt,
_Uint8_t *_Exp, _Uint8_t _Value)
{ /* compare and exchange values atomically with
sequentially consistent memory order */
int _Res;
_Uint8_t _Prev = _INTRIN_SEQ_CST(_InterlockedCompareExchange64)((volatile _LONGLONG *)_Tgt,
_Value, *_Exp);
if (_Prev == *_Exp)
_Res = 1;
else
{ /* copy old value */
_Res = 0;
*_Exp = _Prev;
}
return (_Res);
}
inline int _Compare_exchange_relaxed_8(volatile _Uint8_t *_Tgt,
_Uint8_t *_Exp, _Uint8_t _Value)
{ /* compare and exchange values atomically with
relaxed memory order */
int _Res;
_Uint8_t _Prev = _INTRIN_RELAXED(_InterlockedCompareExchange64)((volatile _LONGLONG *)_Tgt,
_Value, *_Exp);
if (_Prev == *_Exp)
_Res = 1;
else
{ /* copy old value */
_Res = 0;
*_Exp = _Prev;
}
return (_Res);
}
inline int _Compare_exchange_acquire_8(volatile _Uint8_t *_Tgt,
_Uint8_t *_Exp, _Uint8_t _Value)
{ /* compare and exchange values atomically with
acquire memory order */
int _Res;
_Uint8_t _Prev = _INTRIN_ACQUIRE(_InterlockedCompareExchange64)((volatile _LONGLONG *)_Tgt,
_Value, *_Exp);
if (_Prev == *_Exp)
_Res = 1;
else
{ /* copy old value */
_Res = 0;
*_Exp = _Prev;
}
return (_Res);
}
inline int _Compare_exchange_release_8(volatile _Uint8_t *_Tgt,
_Uint8_t *_Exp, _Uint8_t _Value)
{ /* compare and exchange values atomically with
release memory order */
int _Res;
_Uint8_t _Prev = _INTRIN_RELEASE(_InterlockedCompareExchange64)((volatile _LONGLONG *)_Tgt,
_Value, *_Exp);
if (_Prev == *_Exp)
_Res = 1;
else
{ /* copy old value */
_Res = 0;
*_Exp = _Prev;
}
return (_Res);
}
inline int _Atomic_compare_exchange_strong_8(
volatile _Uint8_t *_Tgt, _Uint8_t *_Exp, _Uint8_t _Value,
memory_order _Order1, memory_order _Order2)
{ /* compare and exchange values atomically */
_Validate_compare_exchange_memory_order(_Order1, _Order2);
switch (_Memory_order_upper_bound(_Order1, _Order2))
{
case memory_order_relaxed:
return (_Compare_exchange_relaxed_8(_Tgt, _Exp, _Value));
case memory_order_consume:
case memory_order_acquire:
return (_Compare_exchange_acquire_8(_Tgt, _Exp, _Value));
case memory_order_release:
return (_Compare_exchange_release_8(_Tgt, _Exp, _Value));
case memory_order_acq_rel:
case memory_order_seq_cst:
return (_Compare_exchange_seq_cst_8(_Tgt, _Exp, _Value));
default:
_INVALID_MEMORY_ORDER;
return (0);
}
}
inline int _Atomic_compare_exchange_weak_8(
volatile _Uint8_t *_Tgt, _Uint8_t *_Exp, _Uint8_t _Value,
memory_order _Order1, memory_order _Order2)
{ /* compare and exchange values atomically */
/* No weak compare-exchange is currently available,
even for ARM, so fall back to strong */
return (_Atomic_compare_exchange_strong_8(_Tgt, _Exp, _Value,
_Order1, _Order2));
}
/* _Atomic_fetch_add_8, _Atomic_fetch_sub_8 */
inline _Uint8_t _Fetch_add_seq_cst_8(volatile _Uint8_t *_Tgt, _Uint8_t _Value)
{ /* add _Value to *_Tgt atomically with
sequentially consistent memory order */
return (_INTRIN_SEQ_CST(_InterlockedExchangeAdd64)((volatile _LONGLONG *)_Tgt, _Value));
}
inline _Uint8_t _Fetch_add_relaxed_8(volatile _Uint8_t *_Tgt, _Uint8_t _Value)
{ /* add _Value to *_Tgt atomically with
relaxed memory order */
return (_INTRIN_RELAXED(_InterlockedExchangeAdd64)((volatile _LONGLONG *)_Tgt, _Value));
}
inline _Uint8_t _Fetch_add_acquire_8(volatile _Uint8_t *_Tgt, _Uint8_t _Value)
{ /* add _Value to *_Tgt atomically with
acquire memory order */
return (_INTRIN_ACQUIRE(_InterlockedExchangeAdd64)((volatile _LONGLONG *)_Tgt, _Value));
}
inline _Uint8_t _Fetch_add_release_8(volatile _Uint8_t *_Tgt, _Uint8_t _Value)
{ /* add _Value to *_Tgt atomically with
release memory order */
return (_INTRIN_RELEASE(_InterlockedExchangeAdd64)((volatile _LONGLONG *)_Tgt, _Value));
}
inline _Uint8_t _Atomic_fetch_add_8(
volatile _Uint8_t *_Tgt, _Uint8_t _Value, memory_order _Order)
{ /* add _Value to *_Tgt atomically */
switch (_Order)
{
case memory_order_relaxed:
return (_Fetch_add_relaxed_8(_Tgt, _Value));
case memory_order_consume:
case memory_order_acquire:
return (_Fetch_add_acquire_8(_Tgt, _Value));
case memory_order_release:
return (_Fetch_add_release_8(_Tgt, _Value));
case memory_order_acq_rel:
case memory_order_seq_cst:
return (_Fetch_add_seq_cst_8(_Tgt, _Value));
default:
_INVALID_MEMORY_ORDER;
return (0);
}
}
inline _Uint8_t _Atomic_fetch_sub_8(
volatile _Uint8_t *_Tgt, _Uint8_t _Value, memory_order _Order)
{ /* subtract _Value from *_Tgt atomically */
return (_Atomic_fetch_add_8(_Tgt, 0 - _Value, _Order));
}
/* _Atomic_fetch_and_8 */
inline _Uint8_t _Fetch_and_seq_cst_8(volatile _Uint8_t *_Tgt, _Uint8_t _Value)
{ /* and _Value with *_Tgt atomically with
sequentially consistent memory order */
return (_INTRIN_SEQ_CST(_InterlockedAnd64)((volatile _LONGLONG *)_Tgt, _Value));
}
inline _Uint8_t _Fetch_and_relaxed_8(volatile _Uint8_t *_Tgt, _Uint8_t _Value)
{ /* and _Value with *_Tgt atomically with
relaxed memory order */
return (_INTRIN_RELAXED(_InterlockedAnd64)((volatile _LONGLONG *)_Tgt, _Value));
}
inline _Uint8_t _Fetch_and_acquire_8(volatile _Uint8_t *_Tgt, _Uint8_t _Value)
{ /* and _Value with *_Tgt atomically with
acquire memory order */
return (_INTRIN_ACQUIRE(_InterlockedAnd64)((volatile _LONGLONG *)_Tgt, _Value));
}
inline _Uint8_t _Fetch_and_release_8(volatile _Uint8_t *_Tgt, _Uint8_t _Value)
{ /* and _Value with *_Tgt atomically with
release memory order */
return (_INTRIN_RELEASE(_InterlockedAnd64)((volatile _LONGLONG *)_Tgt, _Value));
}
inline _Uint8_t _Atomic_fetch_and_8(
volatile _Uint8_t *_Tgt, _Uint8_t _Value, memory_order _Order)
{ /* and _Value with *_Tgt atomically */
switch (_Order)
{
case memory_order_relaxed:
return (_Fetch_and_relaxed_8(_Tgt, _Value));
case memory_order_consume:
case memory_order_acquire:
return (_Fetch_and_acquire_8(_Tgt, _Value));
case memory_order_release:
return (_Fetch_and_release_8(_Tgt, _Value));
case memory_order_acq_rel:
case memory_order_seq_cst:
return (_Fetch_and_seq_cst_8(_Tgt, _Value));
default:
_INVALID_MEMORY_ORDER;
return (0);
}
}
/* _Atomic_fetch_or_8 */
inline _Uint8_t _Fetch_or_seq_cst_8(volatile _Uint8_t *_Tgt, _Uint8_t _Value)
{ /* or _Value with *_Tgt atomically with
sequentially consistent memory order */
return (_INTRIN_SEQ_CST(_InterlockedOr64)((volatile _LONGLONG *)_Tgt, _Value));
}
inline _Uint8_t _Fetch_or_relaxed_8(volatile _Uint8_t *_Tgt, _Uint8_t _Value)
{ /* or _Value with *_Tgt atomically with
relaxed memory order */
return (_INTRIN_RELAXED(_InterlockedOr64)((volatile _LONGLONG *)_Tgt, _Value));
}
inline _Uint8_t _Fetch_or_acquire_8(volatile _Uint8_t *_Tgt, _Uint8_t _Value)
{ /* or _Value with *_Tgt atomically with
acquire memory order */
return (_INTRIN_ACQUIRE(_InterlockedOr64)((volatile _LONGLONG *)_Tgt, _Value));
}
inline _Uint8_t _Fetch_or_release_8(volatile _Uint8_t *_Tgt, _Uint8_t _Value)
{ /* or _Value with *_Tgt atomically with
release memory order */
return (_INTRIN_RELEASE(_InterlockedOr64)((volatile _LONGLONG *)_Tgt, _Value));
}
inline _Uint8_t _Atomic_fetch_or_8(
volatile _Uint8_t *_Tgt, _Uint8_t _Value, memory_order _Order)
{ /* or _Value with *_Tgt atomically */
switch (_Order)
{
case memory_order_relaxed:
return (_Fetch_or_relaxed_8(_Tgt, _Value));
case memory_order_consume:
case memory_order_acquire:
return (_Fetch_or_acquire_8(_Tgt, _Value));
case memory_order_release:
return (_Fetch_or_release_8(_Tgt, _Value));
case memory_order_acq_rel:
case memory_order_seq_cst:
return (_Fetch_or_seq_cst_8(_Tgt, _Value));
default:
_INVALID_MEMORY_ORDER;
return (0);
}
}
/* _Atomic_fetch_xor_8 */
inline _Uint8_t _Fetch_xor_seq_cst_8(volatile _Uint8_t *_Tgt, _Uint8_t _Value)
{ /* xor _Value with *_Tgt atomically with
sequentially consistent memory order */
return (_INTRIN_SEQ_CST(_InterlockedXor64)((volatile _LONGLONG *)_Tgt, _Value));
}
inline _Uint8_t _Fetch_xor_relaxed_8(volatile _Uint8_t *_Tgt, _Uint8_t _Value)
{ /* xor _Value with *_Tgt atomically with
relaxed memory order */
return (_INTRIN_RELAXED(_InterlockedXor64)((volatile _LONGLONG *)_Tgt, _Value));
}
inline _Uint8_t _Fetch_xor_acquire_8(volatile _Uint8_t *_Tgt, _Uint8_t _Value)
{ /* xor _Value with *_Tgt atomically with
acquire memory order */
return (_INTRIN_ACQUIRE(_InterlockedXor64)((volatile _LONGLONG *)_Tgt, _Value));
}
inline _Uint8_t _Fetch_xor_release_8(volatile _Uint8_t *_Tgt, _Uint8_t _Value)
{ /* xor _Value with *_Tgt atomically with
release memory order */
return (_INTRIN_RELEASE(_InterlockedXor64)((volatile _LONGLONG *)_Tgt, _Value));
}
inline _Uint8_t _Atomic_fetch_xor_8(
volatile _Uint8_t *_Tgt, _Uint8_t _Value, memory_order _Order)
{ /* xor _Value with *_Tgt atomically */
switch (_Order)
{
case memory_order_relaxed:
return (_Fetch_xor_relaxed_8(_Tgt, _Value));
case memory_order_consume:
case memory_order_acquire:
return (_Fetch_xor_acquire_8(_Tgt, _Value));
case memory_order_release:
return (_Fetch_xor_release_8(_Tgt, _Value));
case memory_order_acq_rel:
case memory_order_seq_cst:
return (_Fetch_xor_seq_cst_8(_Tgt, _Value));
default:
_INVALID_MEMORY_ORDER;
return (0);
}
}
inline int _Atomic_flag_test_and_set(volatile _Atomic_flag_t *_Flag,
memory_order _Order)
{ /* atomically test flag and set to true */
switch (_Order)
{
case memory_order_relaxed:
return (_INTRIN_RELAXED(_interlockedbittestandset)(_Flag, 0));
case memory_order_consume:
case memory_order_acquire:
return (_INTRIN_ACQUIRE(_interlockedbittestandset)(_Flag, 0));
case memory_order_release:
return (_INTRIN_RELEASE(_interlockedbittestandset)(_Flag, 0));
case memory_order_acq_rel:
case memory_order_seq_cst:
return (_INTRIN_SEQ_CST(_interlockedbittestandset)(_Flag, 0));
default:
_INVALID_MEMORY_ORDER;
return (0);
}
}
inline void _Atomic_flag_clear(volatile _Atomic_flag_t *_Flag,
memory_order _Order)
{ /* atomically clear flag */
static_assert(sizeof(_Atomic_flag_t) == sizeof(_Uint4_t),
"Unexpected _Atomic_flag_t size");
switch (_Order)
{
case memory_order_relaxed:
case memory_order_release:
case memory_order_seq_cst:
_Atomic_store_4((volatile _Uint4_t *)_Flag, 0, _Order);
break;
default:
_INVALID_MEMORY_ORDER;
break;
}
}
inline void _Atomic_thread_fence(memory_order _Order)
{ /* force memory visibility and inhibit compiler reordering */
#if defined(_M_ARM)
if (_Order != memory_order_relaxed)
{
_Memory_barrier();
}
#else
_Compiler_barrier();
if (_Order == memory_order_seq_cst)
{ /* force visibility */
static _Uint4_t _Guard;
_Atomic_exchange_4(&_Guard, 0, memory_order_seq_cst);
_Compiler_barrier();
}
#endif
}
inline void _Atomic_signal_fence(memory_order _Order)
{ /* inhibit compiler reordering */
_Compiler_barrier();
}
#if defined(_M_ARM)
#define _YIELD_PROCESSOR __yield()
#else
#define _YIELD_PROCESSOR
#endif
/* SPIN LOCK FOR LOCKING VERSIONS OF OPERATIONS */
/* Use acquire semantics on lock and release on unlock. Given our
current atomic_flag implementation, this ensures not just
atomicity but also sequential consistency. */
inline void _Lock_spin_lock(
volatile _Atomic_flag_t *_Flag)
{ /* spin until _Flag successfully set */
while (_ATOMIC_FLAG_TEST_AND_SET(_Flag, memory_order_acquire))
_YIELD_PROCESSOR;
}
inline void _Unlock_spin_lock(
volatile _Atomic_flag_t *_Flag)
{ /* release previously obtained lock */
_ATOMIC_FLAG_CLEAR(_Flag, memory_order_release);
}
/* ATOMIC OPERATIONS FOR OBJECTS WITH SIZES THAT
DON'T MATCH THE SIZE OF ANY INTEGRAL TYPE */
inline void _Atomic_copy(
volatile _Atomic_flag_t *_Flag, size_t _Size,
volatile void *_Tgt, volatile const void *_Src,
memory_order _Order)
{ /* atomically copy *_Src to *_Tgt with memory ordering */
_Lock_spin_lock(_Flag);
memcpy((void *)_Tgt, (void *)_Src, _Size);
_Unlock_spin_lock(_Flag);
}
inline void _Atomic_exchange(
volatile _Atomic_flag_t *_Flag, size_t _Size,
volatile void *_Tgt, volatile void *_Src,
memory_order _Order)
{ /* atomically swap *_Src and *_Tgt with memory ordering */
unsigned char *_Left = (unsigned char *)_Tgt;
unsigned char *_Right = (unsigned char *)_Src;
_Lock_spin_lock(_Flag);
for (; 0 < _Size; --_Size)
{ /* copy bytes */
unsigned char _Tmp = *_Left;
*_Left++ = *_Right;
*_Right++ = _Tmp;
}
_Unlock_spin_lock(_Flag);
}
inline int _Atomic_compare_exchange_weak(
volatile _Atomic_flag_t *_Flag, size_t _Size,
volatile void *_Tgt, volatile void *_Exp, const volatile void *_Src,
memory_order _Order1, memory_order _Order2)
{ /* atomically compare and exchange with memory ordering */
int _Result;
_Lock_spin_lock(_Flag);
_Result = memcmp((const void *)_Tgt, (const void *)_Exp, _Size) == 0;
if (_Result != 0)
memcpy((void *)_Tgt, (void *)_Src, _Size);
else
memcpy((void *)_Exp, (void *)_Tgt, _Size);
_Unlock_spin_lock(_Flag);
return (_Result);
}
inline int _Atomic_compare_exchange_strong(
volatile _Atomic_flag_t *_Flag, size_t _Size,
volatile void *_Tgt, volatile void *_Exp, const volatile void *_Src,
memory_order _Order1, memory_order _Order2)
{ /* atomically compare and exchange with memory ordering */
return (_Atomic_compare_exchange_weak(_Flag, _Size, _Tgt, _Exp, _Src,
_Order1, _Order2));
}
/* LOCK-FREE PROPERTY FOR INTEGRAL TYPES */
inline int _Atomic_is_lock_free_1(void)
{ /* return true if 1-byte atomic values are lock-free */
return (1 <= _ATOMIC_MAXBYTES_LOCK_FREE);
}
inline int _Atomic_is_lock_free_2(void)
{ /* return true if 2-byte atomic values are lock-free */
return (2 <= _ATOMIC_MAXBYTES_LOCK_FREE);
}
inline int _Atomic_is_lock_free_4(void)
{ /* return true if 4-byte atomic values are lock-free */
return (4 <= _ATOMIC_MAXBYTES_LOCK_FREE);
}
inline int _Atomic_is_lock_free_8(void)
{ /* return true if 8-byte atomic values are lock-free */
return (8 <= _ATOMIC_MAXBYTES_LOCK_FREE);
}
_STD_END
#if defined(_M_IX86)
#pragma pop_macro("_InterlockedExchange64")
#pragma pop_macro("_InterlockedExchangeAdd64")
#pragma pop_macro("_InterlockedAnd64")
#pragma pop_macro("_InterlockedOr64")
#pragma pop_macro("_InterlockedXor64")
#endif /* defined(_M_IX86) */
#pragma pop_macro("and")
#pragma pop_macro("or")
#pragma pop_macro("xor")
#pragma pop_macro("new")
#pragma warning(pop)
#pragma pack(pop)
#endif /* RC_INVOKED */
#endif /* _XATOMIC_H */
/*
* Copyright (c) 1992-2012 by P.J. Plauger. ALL RIGHTS RESERVED.
* Consult your license regarding permissions and restrictions.
V6.00:0009 */