4coder/4coder_lib/4cpp_lexer.h

1927 lines
71 KiB
C

/*
4cpp_lexer.h - 1.0.3
no warranty implied; use at your own risk
This software is in the public domain. Where that dedication is not
recognized, you are granted a perpetual, irrevocable license to copy,
distribute, and modify this file as you see fit.
*/
// TOP
#ifndef FCPP_NEW_LEXER_INC
#define FCPP_NEW_LEXER_INC
// 4tech_standard_preamble.h
#if !defined(FTECH_INTEGERS)
#define FTECH_INTEGERS
#include <stdint.h>
typedef int8_t i8_4tech;
typedef int16_t i16_4tech;
typedef int32_t i32_4tech;
typedef int64_t i64_4tech;
typedef uint8_t u8_4tech;
typedef uint16_t u16_4tech;
typedef uint32_t u32_4tech;
typedef uint64_t u64_4tech;
#if defined(FTECH_32_BIT)
typedef u32_4tech umem_4tech;
#else
typedef u64_4tech umem_4tech;
#endif
typedef float f32_4tech;
typedef double f64_4tech;
typedef int8_t b8_4tech;
typedef int32_t b32_4tech;
#endif
#if !defined(Assert)
# define Assert(n) do{ if (!(n)) *(int*)0 = 0xA11E; }while(0)
#endif
#if !defined(Member)
# define Member(T, m) (((T*)0)->m)
#endif
#if !defined(API_EXPORT)
# define API_EXPORT
#endif
// standard preamble end
// duff-routine defines
#define DfrCase(PC) case PC: goto resumespot_##PC
#define DfrYield(PC, n) { *S_ptr = S; S_ptr->__pc__ = PC; return(n); resumespot_##PC:; }
#define DfrReturn(n) { *S_ptr = S; S_ptr->__pc__ = -1; return(n); }
#ifndef FCPP_LINK
# define FCPP_LINK static
#endif
#include "4cpp_lexer_types.h"
#include "4cpp_lexer_tables.c"
#include "4cpp_default_keywords.h"
////////////////
API_EXPORT FCPP_LINK umem_4tech
cpp_get_table_memory_size_null_terminated(char **str_array, u32_4tech str_count)
/*
DOC_PARAM(str_array, An array of null terminated strings that specifies every string that will be put in the table.)
DOC_PARAM(str_count, The number of strings in str_array.)
DOC_RETURN(Returns the memory size, in bytes, needed to allocate a table for the given strings.)
*/{
umem_4tech memsize = 0;
for (u32_4tech i = 0; i < str_count; ++i){
char *str = str_array[i];
u32_4tech len = 0;
for (; str[len]; ++len);
memsize += 8 + (len+3)&(~3);
}
u32_4tech table_count = (str_count * 3) / 2;
memsize += table_count*sizeof(*Member(Cpp_Keyword_Table, keywords));
return(memsize);
}
API_EXPORT FCPP_LINK umem_4tech
cpp_get_table_memory_size_string_lengths(u32_4tech *str_len, u32_4tech byte_stride, u32_4tech str_count)
/*
DOC_PARAM(str_len, An array specifying the length of every string that will be put in the table.)
DOC_PARAM(byte_stride, The distance in bytes between each length element.)
DOC_PARAM(str_count, The number of length elements in the array.)
DOC_RETURN(Returns the memory size, in bytes, needed to allocate a table for the given strings.)
*/{
umem_4tech memsize = 0;
u8_4tech *length_data = (u8_4tech*)str_len;
for (u32_4tech i = 0; i < str_count; ++i, length_data += byte_stride){
u32_4tech len = *(u32_4tech*)(length_data);
memsize += 8 + (len+3)&(~3);
}
u32_4tech table_count = (str_count * 3)/2;
memsize += table_count*sizeof(*Member(Cpp_Keyword_Table, keywords));
return(memsize);
}
FCPP_LINK void
cpp__write_word_data(char **out_ptr, u32_4tech len, u32_4tech type, char *str){
char *out = *out_ptr;
*(u32_4tech*)out = len;
out += 4;
*(u32_4tech*)out = type;
out += 4;
for (u32_4tech j = 0; str[j]; ++j){
out[j] = str[j];
}
len = (len+3)&(~3);
out += len;
*out_ptr = out;
}
FCPP_LINK b32_4tech
cpp__match(char *a, i32_4tech a_len, char *b, i32_4tech b_len){
b32_4tech result = false;
if (a_len == b_len){
char *a_end = a + a_len;
result = true;
for (; a < a_end; ++a, ++b){
if (*a != *b){
result = false;
break;
}
}
}
return(result);
}
FCPP_LINK void
cpp__fill_table(Cpp_Keyword_Table *table, char *str, u32_4tech str_count){
u64_4tech *keywords = table->keywords;
u8_4tech *base = (u8_4tech*)keywords;
u32_4tech max = table->max;
for (u32_4tech i = 0; i < str_count; ++i){
u32_4tech str_len = *(u32_4tech*)str;
str += 8;
u32_4tech hash = 0;
for (u32_4tech j = 0; j < str_len; ++j){
hash = (hash << 5) + (u32_4tech)(str[j]);
}
u32_4tech first_index = hash % max;
u32_4tech index = first_index;
for (;;){
u64_4tech *keyword_ptr = keywords + index;
if (*keyword_ptr == 0){
*keyword_ptr = (u64_4tech)((str - 8) - (char*)base);
break;
}
else{
u32_4tech *table_str_len = (u32_4tech*)(*keyword_ptr + base);
char *table_str = (char*)(table_str_len + 2);
if (cpp__match(table_str, *table_str_len, str, str_len)){
break;
}
}
++index;
if (index >= max){
index = 0;
}
if (index == first_index){
break;
}
}
str_len = (str_len+3)&(~3);
str += str_len;
}
}
API_EXPORT FCPP_LINK Cpp_Keyword_Table
cpp_make_table(char **str_array, u32_4tech str_stride, u32_4tech *len_array, u32_4tech len_stride, u32_4tech *type_array, u32_4tech type_stride, u32_4tech str_count, void *memory, umem_4tech memsize)
/*
DOC_PARAM(str_array, An array of strings to be put in the new table.)
DOC_PARAM(str_stride, The number of bytes separating each string pointer in the array.)
DOC_PARAM(len_array, An optional array of string lengths. If this array is specified it should have the same number of elements as str_array. If this is not specified the strings in str_array should be null terminated.)
DOC_PARAM(len_stride, If len_array is specified this indicates the number of bytes separating each length element in the array.)
DOC_PARAM(type_array, An optional array of type values. If this array is specified it should have the same number of elements as str_array. If this is not specified the value of each keyword type integer will default to CPP_TOKEN_KEY_OTHER.)
DOC_PARAM(type_stride, If type_array is specified this indicates the number of bytes separating each type integer element in the array.)
DOC_PARAM(str_count, Specifies the number of strings in str_array, and any of the used optional arrays.)
DOC_PARAM(memory, A chunk of memory set aside for this table. This should have at least as much memory as returned by one of the cpp_get_table_memory_size functions.)
DOC_PARAM(memsize, The number of bytes reserved at the memory address for the keyword table.)
DOC_RETURN(On success returns a keyword table struct built on the memory chunk.)
DOC(This call reads in an array of strings, either null terminated or not, and optionally an array of types, and constructs a compact list of the strings and types, and a hashed lookup table. As long as the table will be in use by the lexer the memory chunk passed in is used by the table. The memory may be free or otherwise recycled if the table will not be used again.)
DOC_SEE(cpp_get_table_memory_size_null_terminated)
DOC_SEE(cpp_get_table_memory_size_string_lengths)
*/{
Cpp_Keyword_Table table = {0};
table.mem = memory;
table.memsize = memsize;
table.keywords = (u64_4tech*)memory;
table.max = (str_count * 3)/2;
umem_4tech size_of_table = sizeof(*table.keywords)*table.max;
{
u8_4tech *ptr = (u8_4tech*)memory;
for (umem_4tech i = memsize; i > 0; --i, ++ptr){
*ptr = 0;
}
}
char *out_base = ((char*)memory) + size_of_table;
char *out_ptr = out_base;
u8_4tech *str_ptr = (u8_4tech*)str_array;
u8_4tech *len_ptr = (u8_4tech*)len_array;
u8_4tech *type_ptr = (u8_4tech*)type_array;
if (len_ptr == 0){
if (type_ptr == 0){
for (u32_4tech i = 0; i < str_count; ++i){
char *str_item = *(char**)str_ptr;
str_ptr += str_stride;
u32_4tech len = 0;
for (; str_item[len]; ++len);
cpp__write_word_data(&out_ptr, len, CPP_TOKEN_KEY_OTHER, str_item);
}
}
else{
for (u32_4tech i = 0; i < str_count; ++i){
char *str_item = *(char**)str_ptr;
str_ptr += str_stride;
u32_4tech len = 0;
for (; str_item[len]; ++len);
u32_4tech type = *(u32_4tech*)(type_ptr);
cpp__write_word_data(&out_ptr, len, type, str_item);
}
}
}
else{
if (type_ptr == 0){
for (u32_4tech i = 0; i < str_count; ++i){
char *str_item = *(char**)str_ptr;
str_ptr += str_stride;
u32_4tech len = *(u32_4tech*)(len_ptr);
len_ptr += len_stride;
cpp__write_word_data(&out_ptr, len, CPP_TOKEN_KEY_OTHER, str_item);
}
}
else{
for (u32_4tech i = 0; i < str_count; ++i){
char *str_item = *(char**)str_ptr;
str_ptr += str_stride;
u32_4tech len = *(u32_4tech*)(len_ptr);
len_ptr += len_stride;
u32_4tech type = *(u32_4tech*)(type_ptr);
type_ptr += type_stride;
cpp__write_word_data(&out_ptr, len, type, str_item);
}
}
}
cpp__fill_table(&table, out_base, str_count);
return(table);
}
FCPP_LINK b32_4tech
cpp__table_match(Cpp_Keyword_Table *table, char *s, u32_4tech s_len, u32_4tech **item_ptr_out){
u32_4tech hash = 0;
for (u32_4tech i = 0; i < s_len; ++i){
hash = (hash << 5) + (u32_4tech)(s[i]);
}
u64_4tech *keywords = table->keywords;
u8_4tech *base = (u8_4tech*)keywords;
b32_4tech result = false;
u32_4tech max = table->max;
if (max > 0){
u32_4tech first_index = hash % max;
u32_4tech index = first_index;
for (;;){
u64_4tech *keyword_ptr = keywords + index;
if (*keyword_ptr == 0){
break;
}
u32_4tech *str_len = (u32_4tech*)(*keyword_ptr + base);
char *str = (char*)(str_len + 2);
if (cpp__match(str, *str_len, s, s_len)){
*item_ptr_out = (u32_4tech*)(*keyword_ptr + base);
result = true;
break;
}
++index;
if (index >= max){
index = 0;
}
if (index == first_index){
break;
}
}
}
return(result);
}
API_EXPORT FCPP_LINK umem_4tech
cpp_get_table_memory_size_default(Cpp_Word_Table_Type type)
/*
DOC_PARAM(type, Specifies for which slot of the parser context to get a default result.)
DOC_RETURN(Returns the memory size, in bytes, needed to allocate a table for the given default slot.)
DOC_SEE(Cpp_Word_Table_Type)
*/{
u32_4tech *ptr = 0;
u32_4tech count = 0;
switch (type){
case CPP_TABLE_KEYWORDS:
{
ptr = &default_keywords->length;
count = default_keywords_count;
}break;
case CPP_TABLE_PREPROCESSOR_DIRECTIVES:
{
ptr = &default_preprops->length;
count = default_preprops_count;
}break;
}
u32_4tech stride = sizeof(String_And_Flag);
umem_4tech size = cpp_get_table_memory_size_string_lengths(ptr, stride, count);
return(size);
}
API_EXPORT FCPP_LINK Cpp_Keyword_Table
cpp_make_table_default(Cpp_Word_Table_Type type, void *memory, umem_4tech memsize)
/*
DOC_PARAM(type, Specifies for which slot of the parser context to get a default result.)
DOC_PARAM(memory, A chunk of memory set aside for this table. This should have at least as much memory as returned by one of the cpp_get_table_memory_size functions.)
DOC_PARAM(memsize, The number of bytes reserved at the memory address for the keyword table.)
DOC_RETURN(On success returns a keyword table struct built on the memory chunk.)
DOC(Works as cpp_make_table for a default C++ keyword set.)
DOC_SEE(Cpp_Word_Table_Type)
DOC_SEE(cpp_make_table)
*/{
char **str_ptr = 0;
u32_4tech *len_ptr = 0;
u32_4tech *type_ptr = 0;
u32_4tech count = 0;
switch (type){
case CPP_TABLE_KEYWORDS:
{
str_ptr = &default_keywords->str;
len_ptr = &default_keywords->length;
type_ptr = &default_keywords->flags;
count = default_keywords_count;
}break;
case CPP_TABLE_PREPROCESSOR_DIRECTIVES:
{
str_ptr = &default_preprops->str;
len_ptr = &default_preprops->length;
type_ptr = &default_preprops->flags;
count = default_preprops_count;
}break;
}
u32_4tech stride = sizeof(String_And_Flag);
Cpp_Keyword_Table table = cpp_make_table(str_ptr, stride, len_ptr, stride, type_ptr, stride, count, memory, memsize);
return(table);
}
////////////////
API_EXPORT FCPP_LINK Cpp_Get_Token_Result
cpp_get_token(Cpp_Token_Array array, i32_4tech pos)/*
DOC_PARAM(array, The array of tokens from which to get a token.)
DOC_PARAM(pos, The position, measured in bytes, to get the token for.)
DOC_RETURN(A Cpp_Get_Token_Result struct is returned containing the index of a token and a flag indicating whether the pos is contained in the token or in whitespace after the token.)
DOC(This call finds the token that contains a particular position, or if the position is in between tokens it finds the index of the token to the left of the position. The returned index can be -1 if the position is before the first token.)
DOC_SEE(Cpp_Get_Token_Result)
*/{
Cpp_Get_Token_Result result = {};
Cpp_Token *token_array = array.tokens;
Cpp_Token *token = 0;
i32_4tech first = 0;
i32_4tech count = array.count;
i32_4tech last = count;
i32_4tech this_start = 0, next_start = 0;
if (count > 0){
for (;;){
result.token_index = (first + last)/2;
token = token_array + result.token_index;
this_start = token->start;
if (result.token_index + 1 < count){
next_start = (token + 1)->start;
}
else{
next_start = this_start + token->size;
}
if (this_start <= pos && pos < next_start){
break;
}
else if (pos < this_start){
last = result.token_index;
}
else{
first = result.token_index + 1;
}
if (first == last){
result.token_index = first;
break;
}
}
if (result.token_index == count){
--result.token_index;
result.in_whitespace = 1;
}
else{
if (token->start + token->size <= pos){
result.in_whitespace = 1;
}
}
}
else{
result.token_index = -1;
result.in_whitespace = 1;
}
if (result.token_index >= 0 && result.token_index < count){
token = array.tokens + result.token_index;
result.token_start = token->start;
result.token_end = token->start + token->size;
}
return(result);
}
// TODO(allen): eliminate this and just make a table.
FCPP_LINK Cpp_Lex_PP_State
cpp__pp_directive_to_state(Cpp_Token_Type type){
Cpp_Lex_PP_State result = LSPP_default;
switch (type){
case CPP_PP_INCLUDE: case CPP_PP_IMPORT: case CPP_PP_USING:
{
result = LSPP_include;
}break;
case CPP_PP_DEFINE:
{
result = LSPP_macro_identifier;
}break;
case CPP_PP_UNDEF: case CPP_PP_IFDEF: case CPP_PP_IFNDEF:
{
result = LSPP_identifier;
}break;
case CPP_PP_IF: case CPP_PP_ELIF:
{
result = LSPP_body_if;
}break;
case CPP_PP_PRAGMA:
{
result = LSPP_body;
}break;
case CPP_PP_VERSION: case CPP_PP_LINE:
{
result = LSPP_number;
}break;
case CPP_PP_ERROR:
{
result = LSPP_error;
}break;
case CPP_PP_UNKNOWN: case CPP_PP_ELSE: case CPP_PP_ENDIF:
{
result = LSPP_junk;
}break;
}
return(result);
}
#define LEXER_TB(n) ((n) & (sizeof(S.tb)-1))
FCPP_LINK Cpp_Lex_Result
cpp_lex_nonalloc_null_end_no_limit(Cpp_Lex_Data *S_ptr, char *chunk, i32_4tech size, Cpp_Token_Array *token_array_out){
Cpp_Lex_Data S = *S_ptr;
Cpp_Token *out_tokens = token_array_out->tokens;
i32_4tech token_i = token_array_out->count;
i32_4tech max_token_i = token_array_out->max_count;
u8_4tech c = 0;
i32_4tech end_pos = size + S.chunk_pos;
chunk -= S.chunk_pos;
switch (S.__pc__){
DfrCase(1);
DfrCase(2);
DfrCase(3);
DfrCase(4);
DfrCase(5);
DfrCase(6);
DfrCase(7);
DfrCase(8);
DfrCase(9);
DfrCase(10);
}
Assert(S.keyword_table.keywords != 0);
Assert(S.preprops_table.keywords != 0);
for (;;){
S.white_done = 0;
for(;;){
for (; S.pp_state < LSPP_count && S.pos < end_pos;){
c = (u8_4tech)chunk[S.pos++];
i32_4tech i = S.pp_state + whitespace_fsm_eq_classes[c];
S.pp_state = whitespace_fsm_table[i];
}
S.white_done = (S.pp_state >= LSPP_count);
if (S.white_done == 0){
S.chunk_pos += size;
token_array_out->count = token_i;
DfrYield(4, LexResult_NeedChunk);
}
else{
break;
}
}
--S.pos;
if (S.pp_state >= LSPP_count){
S.pp_state -= LSPP_count;
}
S.token.state_flags = S.pp_state;
if (S.pp_state == LSPP_default && S.ignore_string_delims){
S.pp_state = LSPP_no_strings;
}
S.token_start = S.pos;
S.tb_pos = 0;
S.fsm = null_lex_fsm;
for(;;){
{
u16_4tech *eq_classes = get_eq_classes[S.pp_state];
u8_4tech *fsm_table = get_table[S.pp_state];
for (; S.fsm.state < LS_count && S.pos < end_pos;){
c = chunk[S.pos++];
S.tb[LEXER_TB(S.tb_pos++)] = c;
i32_4tech i = S.fsm.state + eq_classes[c];
S.fsm.state = fsm_table[i];
}
S.fsm.emit_token = (S.fsm.state >= LS_count);
}
if (S.fsm.emit_token == 0){
S.chunk_pos += size;
token_array_out->count = token_i;
DfrYield(3, LexResult_NeedChunk);
}
else{
break;
}
}
Assert(S.fsm.emit_token == 1);
if (c == 0){
S.completed = 1;
}
if (S.fsm.state >= LS_count){
S.fsm.state -= LS_count;
}
switch (S.fsm.state){
case LS_default:
{
switch (c){
case 0: S.fsm.emit_token = 0; break;
#define OperCase(op,t) case op: S.token.type = t; break;
OperCase('{', CPP_TOKEN_BRACE_OPEN);
OperCase('}', CPP_TOKEN_BRACE_CLOSE);
OperCase('[', CPP_TOKEN_BRACKET_OPEN);
OperCase(']', CPP_TOKEN_BRACKET_CLOSE);
OperCase('(', CPP_TOKEN_PARENTHESE_OPEN);
OperCase(')', CPP_TOKEN_PARENTHESE_CLOSE);
OperCase('~', CPP_TOKEN_TILDE);
OperCase(',', CPP_TOKEN_COMMA);
OperCase(';', CPP_TOKEN_SEMICOLON);
OperCase('?', CPP_TOKEN_TERNARY_QMARK);
OperCase('@', CPP_TOKEN_JUNK);
#undef OperCase
case '\\':
if (S.pp_state == LSPP_default || S.pp_state == LSPP_no_strings){
S.token.type = CPP_TOKEN_JUNK;
}
else{
S.pos_overide = S.pos;
S.white_done = false;
for (;;){
for (; !S.white_done && S.pos < end_pos;){
c = chunk[S.pos++];
if (!(c == ' ' || c == '\t' || c == '\r' || c == '\v' || c == '\f')){
S.white_done = true;
}
}
if (!S.white_done){
S.chunk_pos += size;
token_array_out->count = token_i;
DfrYield(1, LexResult_NeedChunk);
}
else{
break;
}
}
if (c == '\n'){
S.fsm.emit_token = 0;
S.pos_overide = 0;
}
else{
S.token.type = CPP_TOKEN_JUNK;
}
}
break;
}
if (c != '@' && c != '\\'){
S.token.flags = CPP_TFLAG_IS_OPERATOR;
}
}break;
case LS_identifier:
{
--S.pos;
i32_4tech word_size = S.pos - S.token_start;
if (word_size < sizeof(S.tb)){
if (S.pp_state == LSPP_body_if){
if (cpp__match(S.tb, word_size, "defined", sizeof("defined")-1)){
S.token.type = CPP_PP_DEFINED;
S.token.flags = CPP_TFLAG_IS_OPERATOR | CPP_TFLAG_IS_KEYWORD;
break;
}
}
u32_4tech *item_ptr = 0;
cpp__table_match(&S.keyword_table, S.tb, S.tb_pos-1, &item_ptr);
if (item_ptr != 0){
S.token.type = (Cpp_Token_Type)(item_ptr[1]);
S.token.flags = CPP_TFLAG_IS_KEYWORD;
break;
}
}
S.token.type = CPP_TOKEN_IDENTIFIER;
S.token.flags = 0;
}break;
case LS_pound:
{
S.token.flags = 0;
switch (c){
case '#': S.token.type = CPP_PP_CONCAT; break;
default:
S.token.type = CPP_PP_STRINGIFY;
--S.pos;
break;
}
}break;
case LS_pp:
{
S.token.type = CPP_TOKEN_JUNK;
S.token.flags = 0;
--S.pos;
}break;
case LS_ppdef:
{
--S.pos;
if (S.tb_pos < sizeof(S.tb)){
i32_4tech pos = S.tb_pos-1;
i32_4tech i = 1;
for (;i < pos; ++i){
if (S.tb[i] != ' '){
break;
}
}
u32_4tech *item_ptr = 0;
cpp__table_match(&S.preprops_table, S.tb+i, S.tb_pos-i-1, &item_ptr);
if (item_ptr != 0){
S.token.type = (Cpp_Token_Type)(item_ptr[1]);
S.token.flags = CPP_TFLAG_PP_DIRECTIVE;
S.pp_state = (u8_4tech)cpp__pp_directive_to_state(S.token.type);
break;
}
}
S.token.type = CPP_TOKEN_JUNK;
S.token.flags = 0;
}break;
case LS_number:
case LS_number0:
case LS_hex:
{
S.fsm.state = LSINT_default;
S.fsm.emit_token = 0;
--S.pos;
for (;;){
for (; S.fsm.state < LSINT_count && S.pos < end_pos;){
c = chunk[S.pos++];
S.fsm.state = int_fsm_table[S.fsm.state + int_fsm_eq_classes[c]];
}
S.fsm.emit_token = (S.fsm.state >= LSINT_count);
if (S.fsm.emit_token == 0){
S.chunk_pos += size;
token_array_out->count = token_i;
DfrYield(5, LexResult_NeedChunk);
}
else{
break;
}
}
--S.pos;
S.token.type = CPP_TOKEN_INTEGER_CONSTANT;
S.token.flags = 0;
}break;
case LS_float:
case LS_crazy_float0:
case LS_crazy_float1:
{
S.token.type = CPP_TOKEN_FLOATING_CONSTANT;
S.token.flags = 0;
switch (c){
case 'f': case 'F': case 'l': case 'L': break;
default: --S.pos; break;
}
}break;
case LS_string_raw:
{
Assert(c != 0);
S.tb_pos = 0;
S.delim_length = 0;
S.token.type = CPP_TOKEN_STRING_CONSTANT;
S.fsm.state = LSSTR_default;
S.fsm.flags = 0;
for (;;){
for (; S.fsm.state < LSSTR_count && S.pos < end_pos;){
c = chunk[S.pos++];
S.tb[LEXER_TB(S.tb_pos++)] = c;
S.fsm.state = raw_str_table[S.fsm.state + raw_str_eq_classes[c]];
S.fsm.flags |= raw_str_flags[S.fsm.state];
}
S.fsm.emit_token = (S.fsm.state >= LSSTR_count);
if (S.fsm.emit_token == 0){
S.chunk_pos += size;
token_array_out->count = token_i;
DfrYield(7, LexResult_NeedChunk);
}
else{
u8_4tech emit_state = S.fsm.state - LSSTR_count;
switch (emit_state){
case LSSTR_default:
{
S.token.type = CPP_TOKEN_JUNK;
goto doublebreak;
}break;
case LSSTR_get_delim:
{
if (S.tb_pos <= 17){
S.delim_length = S.tb_pos-1;
for (i32_4tech n = 0; n < S.delim_length; ++n){
S.raw_delim[n] = S.tb[n];
}
S.tb_pos = 0;
}
else{
S.token.type = CPP_TOKEN_JUNK;
--S.pos;
goto doublebreak;
}
}break;
case LSSTR_check_delim:
{
if (c == 0){
goto doublebreak;
}
else if (S.tb_pos >= S.delim_length){
u32_4tech m = S.tb_pos - S.delim_length - 2;
if (S.tb[LEXER_TB(m)] == ')'){
b32_4tech is_match = true;
++m;
for (i32_4tech n = 0; n < S.delim_length; ++n, ++m){
if (S.tb[LEXER_TB(m)] != S.raw_delim[n]){
is_match = false;
break;
}
}
if (is_match){
goto doublebreak;
}
}
}
}break;
}
S.fsm.state = LSSTR_get_delim;
}
}
doublebreak:;
S.token.flags = (S.fsm.flags)?(CPP_TFLAG_MULTILINE):(0);
}break;
case LS_string_normal:
{
Assert(c != 0);
S.fsm.state = LSSTR_default;
S.fsm.flags = 0;
for (;;){
for (; S.fsm.state < LSSTR_count && S.pos < end_pos;){
c = chunk[S.pos++];
S.fsm.state = normal_str_table[S.fsm.state + normal_str_eq_classes[c]];
S.fsm.flags |= normal_str_flags[S.fsm.state];
}
S.fsm.emit_token = (S.fsm.state >= LSSTR_count);
if (S.fsm.emit_token == 0){
S.chunk_pos += size;
token_array_out->count = token_i;
DfrYield(8, LexResult_NeedChunk);
}
else{
break;
}
}
S.token.type = CPP_TOKEN_STRING_CONSTANT;
S.token.flags = (S.fsm.flags)?(CPP_TFLAG_MULTILINE):(0);
if (c == '\n'){
--S.pos;
}
}break;
case LS_string_include:
{
S.fsm.state = LSSTR_default;
for (;;){
for (; S.fsm.state < LSSTR_include_count && S.pos < end_pos;){
c = chunk[S.pos++];
S.fsm.state = include_str_table[S.fsm.state + include_str_eq_classes[c]];
}
S.fsm.emit_token = (S.fsm.state >= LSSTR_include_count);
if (S.fsm.emit_token == 0){
S.chunk_pos += size;
token_array_out->count = token_i;
DfrYield(6, LexResult_NeedChunk);
}
else{
break;
}
}
S.fsm.state -= LSSTR_include_count;
if (S.fsm.state == LSSTR_default){
S.token.type = CPP_PP_INCLUDE_FILE;
}
else{
S.token.type = CPP_TOKEN_JUNK;
}
S.token.flags = 0;
if (c == '\n'){
--S.pos;
}
}break;
case LS_char:
{
S.fsm.state = LSSTR_default;
S.fsm.flags = 0;
for (;;){
for (; S.fsm.state < LSSTR_count && S.pos < end_pos;){
c = chunk[S.pos++];
S.fsm.state = normal_char_table[S.fsm.state + normal_char_eq_classes[c]];
S.fsm.flags |= normal_char_flags[S.fsm.state];
}
S.fsm.emit_token = (S.fsm.state >= LSSTR_count);
if (S.fsm.emit_token == 0){
S.chunk_pos += size;
token_array_out->count = token_i;
DfrYield(9, LexResult_NeedChunk);
}
else{
break;
}
}
S.token.type = CPP_TOKEN_CHARACTER_CONSTANT;
S.token.flags = (S.fsm.flags)?(CPP_TFLAG_MULTILINE):(0);
if (c == '\n'){
--S.pos;
}
}break;
case LS_comment_pre:
{
S.token.flags = CPP_TFLAG_IS_OPERATOR;
switch (c){
case '=': S.token.type = CPP_TOKEN_DIVEQ; break;
default:
S.token.type = CPP_TOKEN_DIV;
--S.pos;
break;
}
}break;
case LS_comment:
case LS_comment_slashed:
{
S.token.type = CPP_TOKEN_COMMENT;
S.token.flags = 0;
--S.pos;
}break;
case LS_comment_block:
case LS_comment_block_ending:
{
S.token.type = CPP_TOKEN_COMMENT;
S.token.flags = 0;
}break;
case LS_error_message:
{
S.token.type = CPP_PP_ERROR_MESSAGE;
S.token.flags = 0;
--S.pos;
}break;
case LS_dot:
{
S.token.flags = CPP_TFLAG_IS_OPERATOR;
switch (c){
case '*': S.token.type = CPP_TOKEN_PTRDOT; break;
default:
S.token.type = CPP_TOKEN_DOT;
--S.pos;
break;
}
}break;
case LS_ellipsis:
{
switch (c){
case '.':
S.token.flags = CPP_TFLAG_IS_OPERATOR;
S.token.type = CPP_TOKEN_ELLIPSIS;
break;
default:
S.token.type = CPP_TOKEN_JUNK;
--S.pos;
break;
}
}break;
case LS_less:
{
S.token.flags = CPP_TFLAG_IS_OPERATOR;
switch (c){
case '=': S.token.type = CPP_TOKEN_LESSEQ; break;
default:
S.token.type = CPP_TOKEN_LESS;
--S.pos;
break;
}
}break;
case LS_more:
{
S.token.flags = CPP_TFLAG_IS_OPERATOR;
switch (c){
case '=': S.token.type = CPP_TOKEN_GRTREQ; break;
default:
S.token.type = CPP_TOKEN_GRTR;
--S.pos;
break;
}
}break;
case LS_minus:
{
S.token.flags = CPP_TFLAG_IS_OPERATOR;
switch (c){
case '-': S.token.type = CPP_TOKEN_DECREMENT; break;
case '=': S.token.type = CPP_TOKEN_SUBEQ; break;
default:
S.token.type = CPP_TOKEN_MINUS;
--S.pos;
break;
}
}break;
case LS_arrow:
{
S.token.flags = CPP_TFLAG_IS_OPERATOR;
switch (c){
case '*': S.token.type = CPP_TOKEN_PTRARROW; break;
default:
S.token.type = CPP_TOKEN_ARROW;
--S.pos;
break;
}
}break;
case LS_and:
{
S.token.flags = CPP_TFLAG_IS_OPERATOR;
switch (c){
case '&': S.token.type = CPP_TOKEN_AND; break;
case '=': S.token.type = CPP_TOKEN_ANDEQ; break;
default:
S.token.type = CPP_TOKEN_AMPERSAND;
--S.pos;
break;
}
}break;
case LS_or:
{
S.token.flags = CPP_TFLAG_IS_OPERATOR;
switch (c){
case '|': S.token.type = CPP_TOKEN_OR; break;
case '=': S.token.type = CPP_TOKEN_OREQ; break;
default:
S.token.type = CPP_TOKEN_BIT_OR;
--S.pos;
break;
}
}break;
case LS_plus:
{
S.token.flags = CPP_TFLAG_IS_OPERATOR;
switch (c){
case '+': S.token.type = CPP_TOKEN_INCREMENT; break;
case '=': S.token.type = CPP_TOKEN_ADDEQ; break;
default:
S.token.type = CPP_TOKEN_PLUS;
--S.pos;
break;
}
}break;
case LS_colon:
{
S.token.flags = CPP_TFLAG_IS_OPERATOR;
switch (c){
case ':': S.token.type = CPP_TOKEN_SCOPE; break;
default:
S.token.type = CPP_TOKEN_COLON;
--S.pos;
break;
}
}break;
case LS_single_op:
{
u32_4tech plain_version = 0;
u32_4tech eq_version = 0;
S.token.flags = CPP_TFLAG_IS_OPERATOR;
switch (S.tb[0]){
case '*': plain_version = CPP_TOKEN_STAR; eq_version = CPP_TOKEN_MULEQ; break;
case '%': plain_version = CPP_TOKEN_MOD; eq_version = CPP_TOKEN_MODEQ; break;
case '^': plain_version = CPP_TOKEN_BIT_XOR; eq_version = CPP_TOKEN_XOREQ; break;
case '=': plain_version = CPP_TOKEN_EQ; eq_version = CPP_TOKEN_EQEQ; break;
case '!': plain_version = CPP_TOKEN_NOT; eq_version = CPP_TOKEN_NOTEQ; break;
case '<': plain_version = CPP_TOKEN_LSHIFT; eq_version = CPP_TOKEN_LSHIFTEQ; break;
case '>': plain_version = CPP_TOKEN_RSHIFT; eq_version = CPP_TOKEN_RSHIFTEQ; break;
}
S.token.type = eq_version;
if (c != '='){
S.token.type = plain_version;
--S.pos;
}
}break;
}
if (S.pos > S.chunk_pos && chunk[S.pos-1] == 0){
--S.pos;
}
if (S.pp_state == LSPP_default && S.ignore_string_delims){
S.pp_state = LSPP_no_strings;
}
if ((S.token.flags & CPP_TFLAG_PP_DIRECTIVE) == 0){
switch (S.pp_state){
case LSPP_macro_identifier:
{
if (S.fsm.state != LS_identifier){
S.token.type = CPP_TOKEN_JUNK;
S.pp_state = LSPP_junk;
}
else{
S.pp_state = LSPP_body;
}
}break;
case LSPP_identifier:
{
if (S.fsm.state != LS_identifier){
S.token.type = CPP_TOKEN_JUNK;
}
S.pp_state = LSPP_junk;
}break;
case LSPP_number:
{
if (S.token.type != CPP_TOKEN_INTEGER_CONSTANT){
S.token.type = CPP_TOKEN_JUNK;
S.pp_state = LSPP_junk;
}
else{
S.pp_state = LSPP_include;
}
}break;
case LSPP_junk:
{
if (S.token.type != CPP_TOKEN_COMMENT){
S.token.type = CPP_TOKEN_JUNK;
}
}break;
}
}
if (S.fsm.emit_token){
S.token.start = S.token_start;
if (S.pos_overide){
S.token.size = S.pos_overide - S.token_start;
S.pos_overide = 0;
}
else{
S.token.size = S.pos - S.token_start;
}
if ((S.token.flags & CPP_TFLAG_PP_DIRECTIVE) == 0){
if (S.token.state_flags != LSPP_default && S.pp_state){
S.token.flags |= CPP_TFLAG_PP_BODY;
}
}
out_tokens[token_i++] = S.token;
if (token_i == max_token_i){
if (S.pos == end_pos){
S.chunk_pos += size;
token_array_out->count = token_i;
DfrYield(10, LexResult_NeedChunk);
}
token_array_out->count = token_i;
DfrYield(2, LexResult_NeedTokenMemory);
}
}
if (S.completed){
break;
}
}
token_array_out->count = token_i;
DfrReturn(LexResult_Finished);
}
FCPP_LINK Cpp_Lex_Result
cpp_lex_nonalloc_null_end_out_limit(Cpp_Lex_Data *S_ptr, char *chunk, i32_4tech size,
Cpp_Token_Array *token_array_out, i32_4tech max_tokens_out){
Cpp_Token_Array temp_array = *token_array_out;
if (temp_array.max_count > temp_array.count + max_tokens_out){
temp_array.max_count = temp_array.count + max_tokens_out;
}
Cpp_Lex_Result result = cpp_lex_nonalloc_null_end_no_limit(S_ptr, chunk, size, &temp_array);
token_array_out->count = temp_array.count;
if (result == LexResult_NeedTokenMemory){
if (token_array_out->count < token_array_out->max_count){
result = LexResult_HitTokenLimit;
}
}
return(result);
}
FCPP_LINK Cpp_Lex_Result
cpp_lex_nonalloc_no_null_no_limit(Cpp_Lex_Data *S_ptr, char *chunk, i32_4tech size, i32_4tech full_size,
Cpp_Token_Array *token_array_out){
Cpp_Lex_Result result = 0;
if (S_ptr->pos >= full_size){
char end_null = 0;
result = cpp_lex_nonalloc_null_end_no_limit(S_ptr, &end_null, 1, token_array_out);
}
else{
result = cpp_lex_nonalloc_null_end_no_limit(S_ptr, chunk, size, token_array_out);
if (result == LexResult_NeedChunk){
if (S_ptr->pos >= full_size){
char end_null = 0;
result = cpp_lex_nonalloc_null_end_no_limit(S_ptr, &end_null, 1, token_array_out);
}
}
}
return(result);
}
FCPP_LINK Cpp_Lex_Result
cpp_lex_nonalloc_no_null_out_limit(Cpp_Lex_Data *S_ptr, char *chunk, i32_4tech size, i32_4tech full_size,
Cpp_Token_Array *token_array_out, i32_4tech max_tokens_out){
Cpp_Token_Array temp_stack = *token_array_out;
if (temp_stack.max_count > temp_stack.count + max_tokens_out){
temp_stack.max_count = temp_stack.count + max_tokens_out;
}
Cpp_Lex_Result result = cpp_lex_nonalloc_no_null_no_limit(S_ptr, chunk, size, full_size,
&temp_stack);
token_array_out->count = temp_stack.count;
if (result == LexResult_NeedTokenMemory){
if (token_array_out->count < token_array_out->max_count){
result = LexResult_HitTokenLimit;
}
}
return(result);
}
#define HAS_NULL_TERM ((i32_4tech)(-1))
#define NO_OUT_LIMIT ((i32_4tech)(-1))
API_EXPORT FCPP_LINK Cpp_Lex_Result
cpp_lex_step(Cpp_Lex_Data *S_ptr, char *chunk, i32_4tech size, i32_4tech full_size, Cpp_Token_Array *token_array_out, i32_4tech max_tokens_out)/*
DOC_PARAM(S_ptr, The lexer state. Go to the Cpp_Lex_Data section to see how to initialize the state.)
DOC_PARAM(chunk, The first or next chunk of the file being lexed.)
DOC_PARAM(size, The number of bytes in the chunk including the null terminator if the chunk ends in a null terminator. If the chunk ends in a null terminator the system will interpret it as the end of the file.)
DOC_PARAM(full_size, If the final chunk is not null terminated this parameter should specify the length of the file in bytes. To rely on an eventual null terminator use HAS_NULL_TERM for this parameter.)
DOC_PARAM(token_array_out, The token array structure that will receive the tokens output by the lexer.)
DOC_PARAM(max_tokens_out, The maximum number of tokens to be output to the token array. To rely on the max built into the token array pass NO_OUT_LIMIT here.)
DOC(This call is the primary interface of the lexing system. It is quite general so it can be used in a lot of different ways. I will explain the general rules first, and then give some examples of common ways it might be used.
First a lexing state, Cpp_Lex_Data, must be initialized. The file to lex must be read into N contiguous chunks of memory. An output Cpp_Token_Array must be allocated and initialized with the appropriate count and max_count values. Then each chunk of the file must be passed to cpp_lex_step in order using the same lexing state for each call. Every time a call to cpp_lex_step returns LexResult_NeedChunk, the next call to cpp_lex_step should use the next chunk. If the return is some other value, the lexer hasn't finished with the current chunk and it sopped for some other reason, so the same chunk should be used again in the next call.
If the file chunks contain a null terminator the lexer will return LexResult_Finished when it finds this character. At this point calling the lexer again with the same state will result in an error. If you do not have a null terminated chunk to end the file, you may instead pass the exact size in bytes of the entire file to the full_size parameter and it will automatically handle the termination of the lexing state when it has read that many bytes. If a full_size is specified and the system terminates for having seen that many bytes, it will return LexResult_Finished. If a full_size is specified and a null character is read before the total number of bytes have been read the system will still terminate as usual and return LexResult_Finished.
If the system has filled the entire output array it will return LexResult_NeedTokenMemory. When this happens if you want to continue lexing the file you can grow the token array, or switch to a new output array and then call cpp_lex_step again with the chunk that was being lexed and the new output. You can also specify a max_tokens_out which is limits how many new tokens will be added to the token array. Even if token_array_out still had more space to hold tokens, if the max_tokens_out limit is hit, the lexer will stop and return LexResult_HitTokenLimit. If this happens there is still space left in the token array, so you can resume simply by calling cpp_lex_step again with the same chunk and the same output array. Also note that, unlike the chunks which must only be replaced when the system says it needs a chunk. You may switch to or modify the output array in between calls as much as you like.
The most basic use of this system is to get it all done in one big chunk and try to allocate a nearly "infinite" output array so that it will not run out of memory. This way you can get the entire job done in one call and then just assert to make sure it returns LexResult_Finished to you:
CODE_EXAMPLE(
Cpp_Token_Array lex_file(char *file_name){
File_Data file = read_whole_file(file_name);
Cpp_Lex_Data lex_state = cpp_lex_data_init(false);
Cpp_Token_Array array = {0};
array.tokens = (Cpp_Token*)malloc(1 << 20); // hopefully big enough
array.max_count = (1 << 20)/sizeof(Cpp_Token);
Cpp_Lex_Result result = cpp_lex_step(&lex_state, file.data, file.size, file.size, &array, NO_OUT_LIMIT);
Assert(result == LexResult_Finished);
return(array);
})
)
DOC_SEE(Cpp_Lex_Data)
DOC_SEE(Cpp_Lex_Result)
*/{
Cpp_Lex_Result result = 0;
if (full_size == HAS_NULL_TERM){
if (max_tokens_out == NO_OUT_LIMIT){
result = cpp_lex_nonalloc_null_end_no_limit(S_ptr, chunk, size, token_array_out);
}
else{
result = cpp_lex_nonalloc_null_end_out_limit(S_ptr, chunk, size, token_array_out, max_tokens_out);
}
}
else{
if (max_tokens_out == NO_OUT_LIMIT){
result = cpp_lex_nonalloc_no_null_no_limit(S_ptr, chunk, size, full_size, token_array_out);
}
else{
result = cpp_lex_nonalloc_no_null_out_limit(S_ptr, chunk, size, full_size, token_array_out, max_tokens_out);
}
}
return(result);
}
API_EXPORT FCPP_LINK Cpp_Lex_Data
cpp_lex_data_init(b32_4tech ignore_string_delims, Cpp_Keyword_Table keywords, Cpp_Keyword_Table preprocessor_words)/*
DOC_PARAM(ignore_string_delims, TODO)
DOC_PARAM(keywords, TODO)
DOC_PARAM(preprocessor_words, TODO)
DOC_RETURN(A brand new lex state setup to lex from the beginning of the file.)
DOC(Creates a new lex state in the form of a Cpp_Lex_Data struct and returns the struct.)
*/{
Cpp_Lex_Data data = {0};
data.ignore_string_delims = (b8_4tech)ignore_string_delims;
data.keyword_table = keywords;
data.preprops_table = preprocessor_words;
return(data);
}
API_EXPORT FCPP_LINK void
cpp_rebase_tables(Cpp_Lex_Data *data, void *old_base, void *new_base)
/*
DOC_PARAM(data, The lex data in which to perform the rebase.)
DOC_PARAM(old_base, The old base memory address in which the tables were stored.)
DOC_PARAM(new_base, The new base memory address in which the tables are or will be stored.)
DOC(Updates the base address pointers for the all the tables in the lex data as if the data in the original memory chunk old_base was copied to new_base.)
*/{
u8_4tech *old_base_ptr = (u8_4tech*)old_base;
u8_4tech *new_base_ptr = (u8_4tech*)new_base;
u8_4tech *ptr = (u8_4tech*)data->keyword_table.keywords;
data->keyword_table.keywords = (u64_4tech*)(ptr + (new_base_ptr - old_base_ptr));
ptr = (u8_4tech*)data->preprops_table.keywords;
data->preprops_table.keywords = (u64_4tech*)(ptr + (new_base_ptr - old_base_ptr));
}
FCPP_LINK char
cpp_token_get_pp_state(u16_4tech bitfield){
return (char)(bitfield);
}
FCPP_LINK void
cpp_shift_token_starts(Cpp_Token_Array *array, i32_4tech from_token_i, i32_4tech shift_amount){
Cpp_Token *token = array->tokens + from_token_i;
i32_4tech count = array->count, i = 0;
for (i = from_token_i; i < count; ++i, ++token){
token->start += shift_amount;
}
}
FCPP_LINK Cpp_Token
cpp_index_array(Cpp_Token_Array *array, i32_4tech file_size, i32_4tech index){
Cpp_Token result;
if (index < array->count){
result = array->tokens[index];
}
else{
result.start = file_size;
result.size = 0;
result.type = CPP_TOKEN_EOF;
result.flags = 0;
result.state_flags = 0;
}
return(result);
}
API_EXPORT FCPP_LINK Cpp_Relex_Range
cpp_get_relex_range(Cpp_Token_Array *array, i32_4tech start_pos, i32_4tech end_pos)
/*
DOC_PARAM(array, A pointer to the token array that will be modified by the relex,
this array should already contain the tokens for the previous state of the file.)
DOC_PARAM(start_pos, The start position of the edited region of the file.
The start and end points are based on the edited region of the file before the edit.)
DOC_PARAM(end_pos, The end position of the edited region of the file. In particular, end_pos is the first character after the edited region not effected by the edit. Thus if the edited region contained one character end_pos - start_pos should equal 1. The start and end points are based on the edited region of the file before the edit.)
*/{
Cpp_Relex_Range range = {0};
Cpp_Get_Token_Result get_result = {0};
get_result = cpp_get_token(*array, start_pos);
range.start_token_index = get_result.token_index-1;
if (range.start_token_index < 0){
range.start_token_index = 0;
}
get_result = cpp_get_token(*array, end_pos);
range.end_token_index = get_result.token_index;
i32_4tech token_start = 0;
if (range.end_token_index >= 0){
token_start = array->tokens[range.end_token_index].start;
}
if (end_pos > token_start){
++range.end_token_index;
}
if (range.end_token_index < 0){
range.end_token_index = 0;
}
return(range);
}
API_EXPORT FCPP_LINK Cpp_Relex_Data
cpp_relex_init(Cpp_Token_Array *array, i32_4tech start_pos, i32_4tech end_pos, i32_4tech character_shift_amount, b32_4tech ignore_string_delims, Cpp_Keyword_Table keywords, Cpp_Keyword_Table preprocessor_words)
/*
DOC_PARAM(array, A pointer to the token array that will be modified by the relex, this array should already contain the tokens for the previous state of the file.)
DOC_PARAM(start_pos, The start position of the edited region of the file. The start and end points are based on the edited region of the file before the edit.)
DOC_PARAM(end_pos, The end position of the edited region of the file. In particular, end_pos is the first character after the edited region not effected by the edit. Thus if the edited region contained one character end_pos - start_pos should equal 1. The start and end points are based on the edited region of the file before the edit.)
DOC_PARAM(character_shift_amount, The shift in the characters after the edited region.)
DOC_PARAM(ignore_string_delims, TODO)
DOC_PARAM(keywords, TODO)
DOC_PARAM(preprocessor_words, TODO)
DOC_RETURN(Returns a partially initialized relex state.)
DOC(This call does the first setup step of initializing a relex state. To finish initializing the relex state you must tell the state about the positioning of the first chunk it will be fed. There are two methods of doing this, the direct method is with cpp_relex_declare_first_chunk_position, the method that is often more convenient is with cpp_relex_is_start_chunk. If the file is not chunked the second step of initialization can be skipped.)
DOC_SEE(cpp_relex_declare_first_chunk_position)
DOC_SEE(cpp_relex_is_start_chunk)
*/{
Cpp_Relex_Data state = {0};
Cpp_Relex_Range range = cpp_get_relex_range(array, start_pos, end_pos);
state.start_token_index = range.start_token_index;
state.end_token_index = range.end_token_index;
state.original_end_token_index = range.end_token_index;
state.relex_start_position = array->tokens[state.start_token_index].start;
if (start_pos < state.relex_start_position){
state.relex_start_position = start_pos;
}
state.character_shift_amount = character_shift_amount;
state.lex = cpp_lex_data_init(ignore_string_delims, keywords, preprocessor_words);
state.lex.pp_state = cpp_token_get_pp_state(array->tokens[state.start_token_index].state_flags);
state.lex.pos = state.relex_start_position;
return(state);
}
API_EXPORT FCPP_LINK i32_4tech
cpp_relex_start_position(Cpp_Relex_Data *S_ptr)
/*
DOC_PARAM(S_ptr, A pointer to a state that is done with the first stage of initialization (cpp_relex_init))
DOC_RETURN(Returns the first position in the file the relexer wants to read. This is usually a position slightly
earlier than the start_pos provided as the edit range.)
DOC(After doing the first stage of initialization this call is useful for figuring out what chunk
of the file to feed to the lexer first. It should be a chunk that contains the position returned
by this call.)
DOC_SEE(cpp_relex_init)
DOC_SEE(cpp_relex_declare_first_chunk_position)
*/{
i32_4tech result = S_ptr->relex_start_position;
return(result);
}
API_EXPORT FCPP_LINK void
cpp_relex_declare_first_chunk_position(Cpp_Relex_Data *S_ptr, i32_4tech position)
/*
DOC_PARAM(S_ptr, A pointer to a state that is done with the first stage of initialization (cpp_relex_init))
DOC_PARAM(position, The start position of the first chunk that will be fed to the relex process.)
DOC(To initialize the relex system completely, the system needs to know how the characters in the
first file line up with the file's absolute layout. This call declares where the first chunk's start
position is in the absolute file layout, and the system infers the alignment from that. For this method
to work the starting position of the relexing needs to be inside the first chunk. To get the relexers
starting position call cpp_relex_start_position.)
DOC_SEE(cpp_relex_init)
DOC_SEE(cpp_relex_start_position)
*/{
S_ptr->lex.chunk_pos = position;
}
API_EXPORT FCPP_LINK i32_4tech
cpp_relex_is_start_chunk(Cpp_Relex_Data *S_ptr, char *chunk, i32_4tech chunk_size)
/*
DOC_PARAM(S_ptr, A pointer to a state that is done with the first stage of initialization (cpp_relex_init))
DOC_PARAM(chunk, The chunk to check.)
DOC_PARAM(chunk_size, The size of the chunk to check.)
DOC_RETURN(Returns non-zero if the passed in chunk should be used as the first chunk for lexing.)
DOC(With this method, once a state is initialized, each chunk can be fed in one after the other in
the order they appear in the absolute file layout. When this call returns non-zero it means that
the chunk that was passed in on that call should be used in the first call to cpp_relex_step. If,
after trying all of the chunks, they all return zero, pass in NULL for chunk and 0 for chunk_size
to tell the system that all possible chunks have already been tried, and then use those values again
in the one and only call to cpp_relex_step.)
DOC_SEE(cpp_relex_init)
*/{
i32_4tech pos = S_ptr->relex_start_position;
i32_4tech start = S_ptr->lex.chunk_pos;
i32_4tech end = start + chunk_size;
i32_4tech good_chunk = 0;
if (start <= pos && pos < end){
good_chunk = 1;
}
else{
if (chunk == 0){
good_chunk = 1;
S_ptr->lex.chunk_pos = pos;
}
else{
S_ptr->lex.chunk_pos += chunk_size;
}
}
return(good_chunk);
}
API_EXPORT FCPP_LINK Cpp_Lex_Result
cpp_relex_step(Cpp_Relex_Data *S_ptr, char *chunk, i32_4tech chunk_size, i32_4tech full_size,
Cpp_Token_Array *array, Cpp_Token_Array *relex_array)
/*
DOC_PARAM(S_ptr, A pointer to a fully initiazed relex state.)
DOC_PARAM(chunk, A chunk of the edited file being relexed.)
DOC_PARAM(chunk_size, The size of the current chunk.)
DOC_PARAM(full_size, The full size of the edited file.)
DOC_PARAM(array, A pointer to a token array that contained the original tokens before the edit.)
DOC_PARAM(relex_array, A pointer to a token array for spare space. The capacity of the
relex_array determines how far the relex process can go. If it runs out, the process
can be continued if the same relex_array is extended without losing the tokens it contains.
To get an appropriate capacity for relex_array, you can get the range of tokens that the relex
operation is likely to traverse by looking at the result from cpp_get_relex_range.)
DOC(When a file has already been lexed, and then it is edited in a small local way,
rather than lexing the new file all over again, cpp_relex_step can try to find just
the range of tokens that need to be updated and fix them in.
First the lex state must be initialized (cpp_relex_init). Then one or more calls to
cpp_relex_step will start editing the array and filling out the relex_array. The return
value of cpp_relex_step indicates whether the relex was successful or was interrupted
and if it was interrupted, what the system needs to resume.
LexResult_Finished indicates that the relex engine finished successfully.
LexResult_NeedChunk indicates that the system needs the next chunk of the file.
LexResult_NeedTokenMemory indicates that the relex_array has reached capacity, and that
it needs to be extended if it is going to continue. Sometimes in this case it is better
to stop and just lex the entire file normally, because there are a few cases where a small
local change effects a long range of the lexers output.
The relex operation can be closed in one of two ways. If the LexResult_Finished
value has been returned by this call, then to complete the edits to the array make
sure the original array has enough capacity to store the final result by calling
cpp_relex_get_new_count. Then the operation can be finished successfully by calling
cpp_relex_complete.
Whether or not the relex process finished with LexResult_Finished the process can be
finished by calling cpp_relex_abort, which puts the array back into it's original state.
No close is necessary if getting the original array state back is not necessary.)
DOC_SEE(cpp_relex_init)
DOC_SEE(cpp_get_relex_range)
DOC_SEE(Cpp_Lex_Result)
DOC_SEE(cpp_relex_get_new_count)
DOC_SEE(cpp_relex_complete)
DOC_SEE(cpp_relex_abort)
*/{
Cpp_Relex_Data S = *S_ptr;
Cpp_Lex_Result step_result = LexResult_Finished;
switch (S.__pc__){
DfrCase(1);
DfrCase(2);
}
cpp_shift_token_starts(array, S.end_token_index, S.character_shift_amount);
S.end_token = cpp_index_array(array, full_size, S.end_token_index);
// TODO(allen): This can be better I suspect.
for (;;){
step_result = cpp_lex_nonalloc_no_null_out_limit(&S.lex, chunk, chunk_size, full_size, relex_array, 1);
switch (step_result){
case LexResult_HitTokenLimit:
{
Cpp_Token token = relex_array->tokens[relex_array->count-1];
if (token.type == S.end_token.type &&
token.start == S.end_token.start &&
token.size == S.end_token.size &&
token.flags == S.end_token.flags &&
token.state_flags == S.end_token.state_flags){
--relex_array->count;
goto double_break;
}
while (S.lex.pos > S.end_token.start && S.end_token_index < array->count){
++S.end_token_index;
S.end_token = cpp_index_array(array, full_size, S.end_token_index);
}
}
break;
case LexResult_NeedChunk:
{
S_ptr->result_state = LexResult_NeedChunk;
DfrYield(1, LexResult_NeedChunk);
}break;
case LexResult_NeedTokenMemory:
{
S_ptr->result_state = LexResult_NeedTokenMemory;
DfrYield(2, LexResult_NeedTokenMemory);
}break;
case LexResult_Finished: goto double_break;
}
}
double_break:;
S_ptr->result_state = LexResult_Finished;
DfrReturn(LexResult_Finished);
}
API_EXPORT FCPP_LINK i32_4tech
cpp_relex_get_new_count(Cpp_Relex_Data *S_ptr, i32_4tech current_count, Cpp_Token_Array *relex_array)
/*
DOC_PARAM(S_ptr, A pointer to a state that has gone through cpp_relex_step with a LexResult_Finished return.)
DOC_PARAM(current_count, The count of tokens in the original array before the edit.)
DOC_PARAM(relex_array, The relex_array that was used in the cpp_relex_step call/calls.)
DOC(After getting a LexResult_Finished from cpp_relex_step, this call can be used to get
the size the new array will have. If the original array doesn't have enough capacity to store
the new array, it's capacity should be increased before passing to cpp_relex_complete.)
*/{
i32_4tech result = -1;
if (S_ptr->result_state == LexResult_Finished){
i32_4tech delete_amount = S_ptr->end_token_index - S_ptr->start_token_index;
i32_4tech shift_amount = relex_array->count - delete_amount;
result = current_count + shift_amount;
}
return(result);
}
#if !defined(FCPP_FORBID_MEMCPY)
#include <string.h>
#endif
FCPP_LINK void
cpp__block_move(void *dst, void *src, i32_4tech size){
#if !defined(FCPP_FORBID_MEMCPY)
memmove(dst, src, size);
#else
// TODO(allen): find a way to write a fast one of these.
u8_4tech *d = (u8_4tech*)dst, *s = (u8_4tech*)src;
if (d < s || d >= s + size){
for (; size > 0; --size){
*(d++) = *(s++);
}
}
else{
d += size - 1;
s += size - 1;
for (; size > 0; --size){
*(d--) = *(s--);
}
}
#endif
}
API_EXPORT FCPP_LINK void
cpp_relex_complete(Cpp_Relex_Data *S_ptr, Cpp_Token_Array *array, Cpp_Token_Array *relex_array)
/*
DOC_PARAM(S_ptr, A pointer to a state that has gone through cpp_relex_step with a LexResult_Finished return.)
DOC_PARAM(array, The original array being edited by cpp_relex_step calls.)
DOC_PARAM(relex_array, The relex_array that was filled by cpp_relex_step.)
DOC(After getting a LexResult_Finished from cpp_relex_step, and ensuring that
array has a large enough capacity by calling cpp_relex_get_new_count, this call
does the necessary replacement of tokens in the array to make it match the new file.)
*/{
i32_4tech delete_amount = S_ptr->end_token_index - S_ptr->start_token_index;
i32_4tech shift_amount = relex_array->count - delete_amount;
if (shift_amount != 0){
i32_4tech shift_size = array->count - S_ptr->end_token_index;
if (shift_size > 0){
Cpp_Token *old_base = array->tokens + S_ptr->end_token_index;
cpp__block_move(old_base + shift_amount, old_base, sizeof(Cpp_Token)*shift_size);
}
array->count += shift_amount;
}
cpp__block_move(array->tokens + S_ptr->start_token_index, relex_array->tokens, sizeof(Cpp_Token)*relex_array->count);
}
API_EXPORT FCPP_LINK void
cpp_relex_abort(Cpp_Relex_Data *S_ptr, Cpp_Token_Array *array)
/*
DOC_PARAM(S_ptr, A pointer to a state that has gone through at least one cpp_relex_step.)
DOC_PARAM(array, The original array that went through cpp_relex_step to be edited.)
DOC(After the first call to cpp_relex_step, the array's contents may have been changed,
this call assures the array is in it's original state. After this call the relex state
is dead.)
*/{
cpp_shift_token_starts(array, S_ptr->original_end_token_index, -S_ptr->character_shift_amount);
S_ptr->__pc__ = -1;
}
#if !defined(FCPP_FORBID_MALLOC)
#include <stdlib.h>
#include <string.h>
API_EXPORT FCPP_LINK Cpp_Token_Array
cpp_make_token_array(i32_4tech starting_max)/*
DOC_PARAM(starting_max, The number of tokens to initialize the array with.)
DOC_RETURN(An empty Cpp_Token_Array with memory malloc'd for storing tokens.)
DOC(This call allocates a Cpp_Token_Array with malloc for use in other
convenience functions. Stacks that are not allocated this way should not be
used in the convenience functions.)
*/{
Cpp_Token_Array token_array;
token_array.tokens = (Cpp_Token*)malloc(sizeof(Cpp_Token)*starting_max);
token_array.count = 0;
token_array.max_count = starting_max;
return(token_array);
}
API_EXPORT FCPP_LINK void
cpp_free_token_array(Cpp_Token_Array token_array)/*
DOC_PARAM(token_array, An array previously allocated by cpp_make_token_array)
DOC(This call frees a Cpp_Token_Array.)
DOC_SEE(cpp_make_token_array)
*/{
free(token_array.tokens);
}
API_EXPORT FCPP_LINK void
cpp_resize_token_array(Cpp_Token_Array *token_array, i32_4tech new_max)/*
DOC_PARAM(token_array, An array previously allocated by cpp_make_token_array.)
DOC_PARAM(new_max, The new maximum size the array should support. If this is not greater
than the current size of the array the operation is ignored.)
DOC(This call allocates a new memory chunk and moves the existing tokens in the array
over to the new chunk.)
DOC_SEE(cpp_make_token_array)
*/{
if (new_max > token_array->count){
Cpp_Token *new_tokens = (Cpp_Token*)malloc(sizeof(Cpp_Token)*new_max);
if (new_tokens){
memcpy(new_tokens, token_array->tokens, sizeof(Cpp_Token)*token_array->count);
free(token_array->tokens);
token_array->tokens = new_tokens;
token_array->max_count = new_max;
}
}
}
API_EXPORT FCPP_LINK Cpp_Keyword_Table
cpp_alloc_make_table_default(Cpp_Word_Table_Type type)
/*
DOC_PARAM(type, Specifies for which slot of the parser context to get a default result.)
DOC_RETURN(On success returns a keyword table struct built on a memory chunk created by malloc.)
DOC(Works as cpp_make_table for a default keyword list but takes the further liberty of using malloc and getting the memory it needs itself.)
DOC_SEE(cpp_free_table)
DOC_SEE(Cpp_Word_Table_Type)
DOC_SEE(cpp_make_table)
*/{
Cpp_Keyword_Table result = {0};
umem_4tech size = cpp_get_table_memory_size_default(type);
if (size > 0){
void *mem = malloc((size_t)size);
result = cpp_make_table_default(type, mem, size);
}
return(result);
}
API_EXPORT FCPP_LINK void
cpp_free_table(Cpp_Keyword_Table table)
/*
DOC_PARAM(table, A table previously allocated by cpp_alloc_make_table_default.)
DOC(Frees the memory allocated in a cpp_alloc_make_table call.)
*/{
free(table.keywords);
}
API_EXPORT FCPP_LINK void
cpp_lex_file(char *data, i32_4tech size, Cpp_Token_Array *token_array_out)/*
DOC_PARAM(data, The file data to be lexed in a single contiguous block.)
DOC_PARAM(size, The number of bytes in data.)
DOC_PARAM(token_array_out, The token array where the output tokens will be pushed.
This token array must be previously allocated with cpp_make_token_array)
DOC(Lexes an entire file and manages the interaction with the lexer system so that
it is quick and convenient to lex files.
CODE_EXAMPLE(
Cpp_Token_Array lex_file(char *file_name){
File_Data file = read_whole_file(file_name);
// This array will be automatically grown if it runs
// out of memory.
Cpp_Token_Array array = cpp_make_token_array(100);
cpp_lex_file(file.data, file.size, &array);
return(array);
})
)
DOC_SEE(cpp_make_token_array)
*/{
Cpp_Keyword_Table keywords = cpp_alloc_make_table_default(CPP_TABLE_KEYWORDS);
Cpp_Keyword_Table preprocessor_words = cpp_alloc_make_table_default(CPP_TABLE_PREPROCESSOR_DIRECTIVES);
Cpp_Lex_Data S = cpp_lex_data_init(false, keywords, preprocessor_words);
i32_4tech quit = 0;
char empty = 0;
token_array_out->count = 0;
for (;!quit;){
i32_4tech result = cpp_lex_step(&S, data, size, HAS_NULL_TERM, token_array_out, NO_OUT_LIMIT);
switch (result){
case LexResult_Finished:
{
quit = 1;
}break;
case LexResult_NeedChunk:
{
Assert(token_array_out->count < token_array_out->max_count);
// NOTE(allen): We told the system we would provide the null
// terminator, but as it turned out we didn't actually. So in
// the next iteration pass a 1 byte chunk with the null terminator.
data = &empty;
size = 1;
}break;
case LexResult_NeedTokenMemory:
{
// NOTE(allen): We told the system to use all of the output memory
// but we ran out anyway, so allocate more memory. We hereby assume
// the stack was allocated using cpp_make_token_array.
i32_4tech new_max = 2*token_array_out->max_count + 1;
cpp_resize_token_array(token_array_out, new_max);
}break;
}
}
cpp_free_table(keywords);
cpp_free_table(preprocessor_words);
}
#endif
#undef DfrYield
#undef DfrReturn
#undef DfrCase
#endif
// BOTTOM