/* * Mr. 4th Dimention - Allen Webster * * 15.05.2015 * * Math functions for 4coder * */ // TOP #define C_MATH 1 /* * Scalar operators */ #define DEG_TO_RAD (0.0174533f) internal f32 ABS(f32 x){ if (x < 0) x = -x; return(x); } #if C_MATH #include internal f32 MOD(f32 x, i32 m){ f32 whole; f32 frac = modff(x, &whole); f32 r = ((i32)(whole) % m) + frac; return(r); } internal f32 SQRT(f32 x){ f32 r = sqrtf(x); return(r); } internal f32 SIN(f32 x_degrees){ f32 r = sinf(x_degrees * DEG_TO_RAD); return(r); } internal f32 COS(f32 x_degrees){ f32 r = cosf(x_degrees * DEG_TO_RAD); return(r); } #endif /* * Vectors */ struct Vec2{ union{ struct{ f32 x, y; }; struct{ f32 v[2]; }; }; }; struct Vec3{ union{ struct{ f32 x, y, z; }; struct{ f32 r, g, b; }; struct{ Vec2 xy; f32 _z; }; struct{ f32 _x; Vec2 yz; }; struct{ f32 v[3]; }; }; }; struct Vec4{ union{ struct{ f32 r, g, b, a; }; struct{ f32 h, s, l, __a; }; struct{ f32 x, y, z, w; }; struct{ Vec3 rgb; f32 _a; }; struct{ Vec3 xyz; f32 _w; }; struct{ f32 _x; Vec3 yzw; }; struct{ f32 v[4]; }; }; }; internal Vec2 V2(f32 x, f32 y){ Vec2 result; result.x = x; result.y = y; return result; } internal Vec3 V3(f32 x, f32 y, f32 z){ Vec3 result; result.x = x; result.y = y; result.z = z; return result; } internal Vec4 V4(f32 x, f32 y, f32 z, f32 w){ Vec4 result; result.x = x; result.y = y; result.z = z; result.w = w; return result; } internal Vec2 operator+(Vec2 a, Vec2 b){ Vec2 result; result.x = a.x + b.x; result.y = a.y + b.y; return(a + b); } internal Vec3 operator+(Vec3 a, Vec3 b){ Vec3 result; result.x = a.x + b.x; result.y = a.y + b.y; result.z = a.z + b.z; return(a + b); } internal Vec4 operator+(Vec4 a, Vec4 b){ Vec4 result; result.x = a.x + b.x; result.y = a.y + b.y; result.z = a.z + b.z; result.w = a.w + b.w; return(a + b); } internal Vec2 operator-(Vec2 a, Vec2 b){ Vec2 result; result.x = a.x - b.x; result.y = a.y - b.y; return(result); } internal Vec3 operator-(Vec3 a, Vec3 b){ Vec3 result; result.x = a.x - b.x; result.y = a.y - b.y; result.z = a.z - b.z; return(result); } internal Vec4 operator-(Vec4 a, Vec4 b){ Vec4 result; result.x = a.x - b.x; result.y = a.y - b.y; result.z = a.z - b.z; result.w = a.w - b.w; return(result); } internal Vec2 operator*(Vec2 a, f32 k){ Vec2 result; result.x = a.x * k; result.y = a.y * k; return(result); } internal Vec3 operator*(Vec3 a, f32 k){ Vec3 result; result.x = a.x * k; result.y = a.y * k; result.z = a.z * k; return(result); } internal Vec4 operator*(Vec4 a, f32 k){ Vec4 result; result.x = a.x * k; result.y = a.y * k; result.z = a.z * k; result.w = a.w * k; return(result); } internal Vec2 operator*(f32 k, Vec2 a){ Vec2 result; result.x = a.x * k; result.y = a.y * k; return(result); } internal Vec3 operator*(f32 k, Vec3 a){ Vec3 result; result.x = a.x * k; result.y = a.y * k; result.z = a.z * k; return(result); } internal Vec4 operator*(f32 k, Vec4 a){ Vec4 result; result.x = a.x * k; result.y = a.y * k; result.z = a.z * k; result.w = a.w * k; return(result);} internal Vec2& operator+=(Vec2 &a, Vec2 b){ a = (a + b); return a; } internal Vec3& operator+=(Vec3 &a, Vec3 b){ a = (a + b); return a; } internal Vec4& operator+=(Vec4 &a, Vec4 b){ a = (a + b); return a; } internal Vec2& operator-=(Vec2 &a, Vec2 b){ a = (a - b); return a; } internal Vec3& operator-=(Vec3 &a, Vec3 b){ a = (a - b); return a; } internal Vec4& operator-=(Vec4 &a, Vec4 b){ a = (a - b); return a; } internal Vec2& operator*=(Vec2 &a, f32 k){ a = (a*k); return a; } internal Vec3& operator*=(Vec3 &a, f32 k){ a = (a*k); return a; } internal Vec4& operator*=(Vec4 &a, f32 k){ a = (a*k); return a; } internal f32 dot(Vec2 a, Vec2 b){ f32 result; result = a.x*b.x + a.y*b.y; return result; } internal f32 dot(Vec3 a, Vec3 b){ f32 result; result = a.x*b.x + a.y*b.y + a.z*b.z; return result; } internal f32 dot(Vec4 a, Vec4 b){ f32 result; result = a.x*b.x + a.y*b.y + a.z*b.z + a.w*b.w; return result; } internal Vec3 cross(Vec3 a, Vec3 b){ Vec3 result; result.x = a.y*b.z - b.y*a.z; result.y = a.z*b.x - b.z*a.x; result.z = a.x*b.y - b.x*a.y; return result; } internal Vec2 hadamard(Vec2 a, Vec2 b){ a.x *= b.x; a.y *= b.y; return(a); } internal Vec3 hadamard(Vec3 a, Vec3 b){ a.x *= b.x; a.y *= b.y; a.z *= b.z; return(a); } internal Vec4 hadamard(Vec4 a, Vec4 b){ a.x *= b.x; a.y *= b.y; a.z *= b.z; a.w *= b.w; return(a); } internal Vec2 perp(Vec2 v){ return(V2(-v.y, v.x)); } internal Vec2 polar_to_cartesian(f32 theta_degrees, f32 length){ return(V2(COS(theta_degrees), SIN(theta_degrees))*length); } internal Vec2 rotate(Vec2 v, f32 theta_degrees){ f32 c = COS(theta_degrees); f32 s = SIN(theta_degrees); return(V2(v.x*c - v.y*s, v.x*s + v.y*c)); } /* *Lerps, Clamps, Thresholds, Etc */ internal f32 lerp(f32 a, f32 t, f32 b){ return(a + (b-a)*t); } internal i32 lerp(i32 a, f32 t, i32 b){ return((i32)(lerp((f32)a, t, (f32)b))); } internal Vec2 lerp(Vec2 a, f32 t, Vec2 b){ return(a + (b-a)*t); } internal Vec3 lerp(Vec3 a, f32 t, Vec3 b){ return(a + (b-a)*t); } internal Vec4 lerp(Vec4 a, f32 t, Vec4 b){ return(a + (b-a)*t); } internal f32 unlerp(f32 a, f32 x, f32 b){ f32 r = x; if (b > a){ r = (x - a) / (b - a); } return(r); } internal f32 clamp(f32 a, f32 n, f32 z){ if (n < a){ n = a; } else if (n > z){ n = z; } return(n); } internal i32 clamp(i32 a, i32 n, i32 z){ if (n < a){ n = a; } else if (n > z){ n = z; } return(n); } internal i64 clamp(i64 a, i64 n, i64 z){ if (n < a){ n = a; } else if (n > z){ n = z; } return(n); } internal u32 clamp(u32 a, u32 n, u32 z){ if (n < a){ n = a; } else if (n > z){ n = z; } return(n); } internal u64 clamp(u64 a, u64 n, u64 z){ if (n < a){ n = a; } else if (n > z){ n = z; } return(n); } #define clamp_top(a,b) Min(a,b) #define clamp_bottom(a,b) Max(a,b) /* *Color */ // TODO(allen): Convert colors to Vec4 internal u32 color_blend(u32 a, f32 t, u32 b){ union{ u8 byte[4]; u32 comp; } A, B, R; A.comp = a; B.comp = b; R.byte[0] = (u8)lerp(A.byte[0], t, B.byte[0]); R.byte[1] = (u8)lerp(A.byte[1], t, B.byte[1]); R.byte[2] = (u8)lerp(A.byte[2], t, B.byte[2]); R.byte[3] = (u8)lerp(A.byte[3], t, B.byte[3]); return R.comp; } internal Vec3 unpack_color3(u32 color){ Vec3 result; result.r = ((color >> 16) & 0xFF) / 255.f; result.g = ((color >> 8) & 0xFF) / 255.f; result.b = ((color >> 0) & 0xFF) / 255.f; return result; } internal Vec4 unpack_color4(u32 color){ Vec4 result; result.a = ((color >> 24) & 0xFF) / 255.f; result.r = ((color >> 16) & 0xFF) / 255.f; result.g = ((color >> 8) & 0xFF) / 255.f; result.b = ((color >> 0) & 0xFF) / 255.f; return result; } internal u32 pack_color4(Vec4 color){ u32 result = ((u8)(color.a*255) << 24) | ((u8)(color.r*255) << 16) | ((u8)(color.g*255) << 8) | ((u8)(color.b*255) << 0); return result; } internal Vec4 rgba_to_hsla(Vec4 rgba){ Vec4 hsla = {}; f32 max, min, delta; i32 maxc; hsla.a = rgba.a; max = rgba.r; min = rgba.r; maxc = 0; if (rgba.r < rgba.g){ max = rgba.g; maxc = 1; } if (rgba.b > max){ max = rgba.b; maxc = 2; } if (rgba.r > rgba.g){ min = rgba.g; } if (rgba.b < min){ min = rgba.b; } delta = max - min; hsla.z = (max + min)*.5f; if (delta == 0){ hsla.x = 0.f; hsla.y = 0.f; } else{ switch (maxc){ case 0: { hsla.x = (rgba.g - rgba.b) / delta; hsla.x += (rgba.g < rgba.b)*6.f; }break; case 1: { hsla.x = (rgba.b - rgba.r) / delta; hsla.x += 2.f; }break; case 2: { hsla.x = (rgba.r - rgba.g) / delta; hsla.x += 4.f; }break; } hsla.x *= (1/6.f); //*60 / 360 hsla.y = delta / (1.f - ABS(2.f*hsla.z - 1.f)); } return hsla; } internal Vec4 hsla_to_rgba(Vec4 hsla){ if (hsla.h >= 1.f) hsla.h = 0.f; Vec4 rgba = {}; f32 C = (1.f - ABS(2*hsla.z - 1.f))*hsla.y; f32 X = C*(1.f-ABS(MOD(hsla.x*6.f, 2)-1.f)); f32 m = hsla.z - C*.5f; i32 H = floor32(hsla.x*6.f); rgba.a = hsla.a; switch (H){ case 0: rgba.r = C; rgba.g = X; rgba.b = 0; break; case 1: rgba.r = X; rgba.g = C; rgba.b = 0; break; case 2: rgba.r = 0; rgba.g = C; rgba.b = X; break; case 3: rgba.r = 0; rgba.g = X; rgba.b = C; break; case 4: rgba.r = X; rgba.g = 0; rgba.b = C; break; case 5: rgba.r = C; rgba.g = 0; rgba.b = X; break; } rgba.r += m; rgba.g += m; rgba.b += m; return(rgba); } // // Rectangle Operations // internal i32_Rect i32R(int32_t l, int32_t t, int32_t r, int32_t b){ i32_Rect rect = {}; rect.x0 = l; rect.y0 = t; rect.x1 = r; rect.y1 = b; return(rect); } internal i32_Rect i32R(f32_Rect r){ i32_Rect rect; rect.x0 = (int32_t)r.x0; rect.y0 = (int32_t)r.y0; rect.x1 = (int32_t)r.x1; rect.y1 = (int32_t)r.y1; return(rect); } internal f32_Rect f32R(float l, float t, float r, float b){ f32_Rect rect; rect.x0 = l; rect.y0 = t; rect.x1 = r; rect.y1 = b; return(rect); } internal f32_Rect f32R(i32_Rect r){ f32_Rect rect; rect.x0 = (float)r.x0; rect.y0 = (float)r.y0; rect.x1 = (float)r.x1; rect.y1 = (float)r.y1; return(rect); } internal int32_t rect_equal(i32_Rect r1, i32_Rect r2){ int32_t result = (r1.x0 == r2.x0 && r1.y0 == r2.y0 && r1.x1 == r2.x1 && r1.y1 == r2.y1); return(result); } internal int32_t hit_check(int32_t x, int32_t y, int32_t x0, int32_t y0, int32_t x1, int32_t y1){ return(x >= x0 && x < x1 && y >= y0 && y < y1); } internal int32_t hit_check(int32_t x, int32_t y, i32_Rect rect){ return(hit_check(x, y, rect.x0, rect.y0, rect.x1, rect.y1)); } internal i32_Rect get_inner_rect(i32_Rect outer, i32 margin){ i32_Rect r; r.x0 = outer.x0 + margin; r.y0 = outer.y0 + margin; r.x1 = outer.x1 - margin; r.y1 = outer.y1 - margin; return(r); } internal f32_Rect get_inner_rect(f32_Rect outer, f32 margin){ f32_Rect r; r.x0 = outer.x0 + margin; r.y0 = outer.y0 + margin; r.x1 = outer.x1 - margin; r.y1 = outer.y1 - margin; return(r); } internal int32_t fits_inside(i32_Rect rect, i32_Rect outer){ return(rect.x0 >= outer.x0 && rect.x1 <= outer.x1 && rect.y0 >= outer.y0 && rect.y1 <= outer.y1); } static int32_t interval_overlap(float a0, float a1, float b0, float b1){ if ((a0 <= b0 && b0 < a1) || (b0 <= a0 && a0 < b1)){ return(true); } return(false); } static int32_t rect_opverlap(f32_Rect a, f32_Rect b){ if (interval_overlap(a.x0, a.x1, b.x0, b.x1) && interval_overlap(a.y0, a.y1, b.y0, b.y1)){ return(true); } return(false); } // BOTTOM