/* * Mr. 4th Dimention - Allen Webster * * 12.12.2014 * * Application Layer for project codename "4ed" * */ #ifndef FRED_H #define FRED_H struct Partition{ u8 *base; i32 pos, max; }; inline Partition partition_open(void *memory, i32 size){ Partition partition; partition.base = (u8*)memory;; partition.pos = 0; partition.max = size; return partition; } inline void* partition_allocate(Partition *data, i32 size){ void *ret = 0; if (size > 0 && data->pos + size <= data->max){ ret = data->base + data->pos; data->pos += size; } return ret; } inline void partition_align(Partition *data, u32 boundary){ data->pos = (data->pos + (boundary - 1)) & (~boundary); } inline void* partition_current(Partition *data){ return data->base + data->pos; } inline i32 partition_remaining(Partition *data){ return data->max - data->pos; } inline Partition partition_sub_part(Partition *data, i32 size){ Partition result = {}; void *d = partition_allocate(data, size); if (d) result = partition_open(d, size); return result; } #define push_struct(part, T) (T*)partition_allocate(part, sizeof(T)) #define push_array(part, T, size) (T*)partition_allocate(part, sizeof(T)*(size)) #define push_block(part, size) partition_allocate(part, size) enum Memory_Bubble_Flag{ MEM_BUBBLE_USED = 0x1, MEM_BUBBLE_DEBUG = 0xD3000000, MEM_BUBBLE_SYS_DEBUG = 0x5D000000, MEM_BUBBLE_DEBUG_MASK = 0xFF000000 }; struct Bubble{ Bubble *prev; Bubble *next; u32 flags; i32 size; u32 type; u32 _unused_; }; struct General_Memory{ Bubble sentinel; }; inline void insert_bubble(Bubble *prev, Bubble *bubble){ bubble->prev = prev; bubble->next = prev->next; bubble->prev->next = bubble; bubble->next->prev = bubble; } inline void remove_bubble(Bubble *bubble){ bubble->prev->next = bubble->next; bubble->next->prev = bubble->prev; } #if FRED_INTERNAL #define MEM_BUBBLE_FLAG_INIT MEM_BUBBLE_DEBUG #else #define MEM_BUBBLE_FLAG_INIT 0 #endif internal void general_memory_open(General_Memory *general, void *memory, i32 size){ general->sentinel.prev = &general->sentinel; general->sentinel.next = &general->sentinel; general->sentinel.flags = MEM_BUBBLE_USED; general->sentinel.size = 0; Bubble *first = (Bubble*)memory; first->flags = (u32)MEM_BUBBLE_FLAG_INIT; first->size = size - sizeof(Bubble); insert_bubble(&general->sentinel, first); } #define BUBBLE_MIN_SIZE 1024 internal void general_memory_attempt_split(Bubble *bubble, i32 wanted_size){ i32 remaining_size = bubble->size - wanted_size; if (remaining_size >= BUBBLE_MIN_SIZE){ bubble->size = wanted_size; Bubble *new_bubble = (Bubble*)((u8*)(bubble + 1) + wanted_size); new_bubble->flags = (u32)MEM_BUBBLE_FLAG_INIT; new_bubble->size = remaining_size - sizeof(Bubble); insert_bubble(bubble, new_bubble); } } internal void* general_memory_allocate(General_Memory *general, i32 size, u32 type = 0){ void *result = 0; if (size < Kbytes(1)){ int x = 1; AllowLocal(x); } for (Bubble *bubble = general->sentinel.next; bubble != &general->sentinel; bubble = bubble->next){ if (!(bubble->flags & MEM_BUBBLE_USED)){ if (bubble->size >= size){ result = bubble + 1; bubble->flags |= MEM_BUBBLE_USED; bubble->type = type; general_memory_attempt_split(bubble, size); break; } } } return result; } inline void general_memory_do_merge(Bubble *left, Bubble *right){ left->size += sizeof(Bubble) + right->size; remove_bubble(right); } inline void general_memory_attempt_merge(Bubble *left, Bubble *right){ if (!(left->flags & MEM_BUBBLE_USED) && !(right->flags & MEM_BUBBLE_USED)){ general_memory_do_merge(left, right); } } internal void general_memory_free(General_Memory *general, void *memory){ Bubble *bubble = ((Bubble*)memory) - 1; Assert((!FRED_INTERNAL) || (bubble->flags & MEM_BUBBLE_DEBUG_MASK) == MEM_BUBBLE_DEBUG); bubble->flags &= ~MEM_BUBBLE_USED; bubble->type = 0; Bubble *prev, *next; prev = bubble->prev; next = bubble->next; general_memory_attempt_merge(bubble, next); general_memory_attempt_merge(prev, bubble); } internal void* general_memory_reallocate(General_Memory *general, void *old, i32 old_size, i32 size, u32 type = 0){ void *result = old; Bubble *bubble = ((Bubble*)old) - 1; bubble->type = type; Assert((!FRED_INTERNAL) || (bubble->flags & MEM_BUBBLE_DEBUG_MASK) == MEM_BUBBLE_DEBUG); i32 additional_space = size - bubble->size; if (additional_space > 0){ Bubble *next = bubble->next; if (!(next->flags & MEM_BUBBLE_USED) && next->size + sizeof(Bubble) >= additional_space){ general_memory_do_merge(bubble, next); general_memory_attempt_split(bubble, size); } else{ result = general_memory_allocate(general, size, type); if (old_size) memcpy(result, old, old_size); general_memory_free(general, old); } } return result; } inline void* general_memory_reallocate_nocopy(General_Memory *general, void *old, i32 size, u32 type = 0){ return general_memory_reallocate(general, old, 0, size, type); } struct Temp_Memory{ Partition *part; i32 pos; }; internal Temp_Memory begin_temp_memory(Partition *data){ Temp_Memory result; result.part = data; result.pos = data->pos; return result; } internal void end_temp_memory(Temp_Memory temp){ temp.part->pos = temp.pos; } struct Mem_Options{ Partition part; General_Memory general; }; #if SOFTWARE_RENDER struct Render_Target{ void *pixel_data; i32 width, height, pitch; }; #else struct Render_Target{ void *handle; void *context; i32_Rect clip_boxes[5]; i32 clip_top; i32 width, height; i32 bound_texture; u32 color; }; #endif struct Application_Memory{ void *vars_memory; i32 vars_memory_size; void *target_memory; i32 target_memory_size; }; #define KEY_INPUT_BUFFER_SIZE 4 #define KEY_INPUT_BUFFER_DSIZE (KEY_INPUT_BUFFER_SIZE << 1) enum Key_Control{ CONTROL_KEY_SHIFT, CONTROL_KEY_CONTROL, CONTROL_KEY_ALT, // always last CONTROL_KEY_COUNT }; struct Key_Event_Data{ u16 keycode; u16 loose_keycode; u16 character; u16 character_no_caps_lock; }; struct Key_Input_Data{ // NOTE(allen): keycodes here Key_Event_Data press[KEY_INPUT_BUFFER_SIZE]; Key_Event_Data hold[KEY_INPUT_BUFFER_SIZE]; i32 press_count; i32 hold_count; // NOTE(allen): // true when the key is held down // false when the key is not held down bool8 control_keys[CONTROL_KEY_COUNT]; bool8 caps_lock; }; struct Key_Summary{ i32 count; Key_Event_Data keys[KEY_INPUT_BUFFER_DSIZE]; bool8 modifiers[CONTROL_KEY_COUNT]; }; struct Key_Single{ Key_Event_Data key; bool8 *modifiers; }; inline Key_Single get_single_key(Key_Summary *summary, i32 index){ Assert(index >= 0 && index < summary->count); Key_Single key; key.key = summary->keys[index]; key.modifiers = summary->modifiers; return key; } struct Mouse_State{ bool32 out_of_window; bool32 left_button, right_button; bool32 left_button_prev, right_button_prev; i32 x, y; i16 wheel; }; struct Mouse_Summary{ i32 mx, my; bool32 l, r; bool32 press_l, press_r; bool32 release_l, release_r; bool32 out_of_window; bool32 wheel_used; i16 wheel_amount; }; struct Input_Summary{ Mouse_Summary mouse; Key_Summary keys; Key_Codes *codes; }; // TODO(allen): This can go, and we can just use a String for it. struct Clipboard_Contents{ u8 *str; i32 size; }; struct Thread_Context; internal bool32 app_init(Thread_Context *thread, Application_Memory *memory, Key_Codes *lose_codes, Clipboard_Contents clipboard); enum Application_Mouse_Cursor{ APP_MOUSE_CURSOR_DEFAULT, APP_MOUSE_CURSOR_ARROW, APP_MOUSE_CURSOR_IBEAM, APP_MOUSE_CURSOR_LEFTRIGHT, APP_MOUSE_CURSOR_UPDOWN, // never below this APP_MOUSE_CURSOR_COUNT }; struct Application_Step_Result{ Application_Mouse_Cursor mouse_cursor_type; bool32 redraw; }; internal Application_Step_Result app_step(Thread_Context *thread, Key_Codes *codes, Key_Input_Data *input, Mouse_State *state, bool32 time_step, Render_Target *target, Application_Memory *memory, Clipboard_Contents clipboard, bool32 first_step, bool32 force_redraw); #endif