// TOP #ifndef FCPP_NEW_LEXER_INC #define FCPP_NEW_LEXER_INC #ifndef Assert # define Assert(n) do{ if (!(n)) *(int*)0 = 0xA11E; }while(0) #endif #ifndef FCPP_LINK # define FCPP_LINK static #endif #define FCPP_INTERNAL FCPP_LINK #include #if !defined(FSTRING_GUARD) # define FSTRING_IMPLEMENTATION # include "4coder_string.h" #endif #include "4cpp_lexer_types.h" #include "4cpp_lexer_tables.c" // TODO(allen): revisit this keyword data declaration system struct String_And_Flag{ String str; uint32_t flags; }; static String_And_Flag preprops[] = { {make_lit_string("include"), CPP_PP_INCLUDE } , {make_lit_string("INCLUDE"), CPP_PP_INCLUDE } , {make_lit_string("ifndef" ), CPP_PP_IFNDEF } , {make_lit_string("IFNDEF" ), CPP_PP_IFNDEF } , {make_lit_string("define" ), CPP_PP_DEFINE } , {make_lit_string("DEFINE" ), CPP_PP_DEFINE } , {make_lit_string("import" ), CPP_PP_IMPORT } , {make_lit_string("IMPORT" ), CPP_PP_IMPORT } , {make_lit_string("pragma" ), CPP_PP_PRAGMA } , {make_lit_string("PRAGMA" ), CPP_PP_PRAGMA } , {make_lit_string("undef" ), CPP_PP_UNDEF } , {make_lit_string("UNDEF" ), CPP_PP_UNDEF } , {make_lit_string("endif" ), CPP_PP_ENDIF } , {make_lit_string("ENDIF" ), CPP_PP_ENDIF } , {make_lit_string("error" ), CPP_PP_ERROR } , {make_lit_string("ERROR" ), CPP_PP_ERROR } , {make_lit_string("ifdef" ), CPP_PP_IFDEF } , {make_lit_string("IFDEF" ), CPP_PP_IFDEF } , {make_lit_string("using" ), CPP_PP_USING } , {make_lit_string("USING" ), CPP_PP_USING } , {make_lit_string("else" ), CPP_PP_ELSE } , {make_lit_string("ELSE" ), CPP_PP_ELSE } , {make_lit_string("elif" ), CPP_PP_ELIF } , {make_lit_string("ELIF" ), CPP_PP_ELIF } , {make_lit_string("line" ), CPP_PP_LINE } , {make_lit_string("LINE" ), CPP_PP_LINE } , {make_lit_string("if" ), CPP_PP_IF } , {make_lit_string("IF" ), CPP_PP_IF } , }; static String_And_Flag keywords[] = { {make_lit_string("true") , CPP_TOKEN_BOOLEAN_CONSTANT}, {make_lit_string("false") , CPP_TOKEN_BOOLEAN_CONSTANT}, {make_lit_string("and") , CPP_TOKEN_AND}, {make_lit_string("and_eq") , CPP_TOKEN_ANDEQ}, {make_lit_string("bitand") , CPP_TOKEN_BIT_AND}, {make_lit_string("bitor") , CPP_TOKEN_BIT_OR}, {make_lit_string("or") , CPP_TOKEN_OR}, {make_lit_string("or_eq") , CPP_TOKEN_OREQ}, {make_lit_string("sizeof") , CPP_TOKEN_SIZEOF}, {make_lit_string("alignof") , CPP_TOKEN_ALIGNOF}, {make_lit_string("decltype") , CPP_TOKEN_DECLTYPE}, {make_lit_string("throw") , CPP_TOKEN_THROW}, {make_lit_string("new") , CPP_TOKEN_NEW}, {make_lit_string("delete") , CPP_TOKEN_DELETE}, {make_lit_string("xor") , CPP_TOKEN_BIT_XOR}, {make_lit_string("xor_eq") , CPP_TOKEN_XOREQ}, {make_lit_string("not") , CPP_TOKEN_NOT}, {make_lit_string("not_eq") , CPP_TOKEN_NOTEQ}, {make_lit_string("typeid") , CPP_TOKEN_TYPEID}, {make_lit_string("compl") , CPP_TOKEN_BIT_NOT}, {make_lit_string("void") , CPP_TOKEN_KEY_TYPE}, {make_lit_string("bool") , CPP_TOKEN_KEY_TYPE}, {make_lit_string("char") , CPP_TOKEN_KEY_TYPE}, {make_lit_string("int") , CPP_TOKEN_KEY_TYPE}, {make_lit_string("float") , CPP_TOKEN_KEY_TYPE}, {make_lit_string("double") , CPP_TOKEN_KEY_TYPE}, {make_lit_string("long") , CPP_TOKEN_KEY_MODIFIER}, {make_lit_string("short") , CPP_TOKEN_KEY_MODIFIER}, {make_lit_string("unsigned") , CPP_TOKEN_KEY_MODIFIER}, {make_lit_string("const") , CPP_TOKEN_KEY_QUALIFIER}, {make_lit_string("volatile") , CPP_TOKEN_KEY_QUALIFIER}, {make_lit_string("asm") , CPP_TOKEN_KEY_CONTROL_FLOW}, {make_lit_string("break") , CPP_TOKEN_KEY_CONTROL_FLOW}, {make_lit_string("case") , CPP_TOKEN_KEY_CONTROL_FLOW}, {make_lit_string("catch") , CPP_TOKEN_KEY_CONTROL_FLOW}, {make_lit_string("continue") , CPP_TOKEN_KEY_CONTROL_FLOW}, {make_lit_string("default") , CPP_TOKEN_KEY_CONTROL_FLOW}, {make_lit_string("do") , CPP_TOKEN_KEY_CONTROL_FLOW}, {make_lit_string("else") , CPP_TOKEN_KEY_CONTROL_FLOW}, {make_lit_string("for") , CPP_TOKEN_KEY_CONTROL_FLOW}, {make_lit_string("goto") , CPP_TOKEN_KEY_CONTROL_FLOW}, {make_lit_string("if") , CPP_TOKEN_KEY_CONTROL_FLOW}, {make_lit_string("return") , CPP_TOKEN_KEY_CONTROL_FLOW}, {make_lit_string("switch") , CPP_TOKEN_KEY_CONTROL_FLOW}, {make_lit_string("try") , CPP_TOKEN_KEY_CONTROL_FLOW}, {make_lit_string("while") , CPP_TOKEN_KEY_CONTROL_FLOW}, {make_lit_string("static_assert") , CPP_TOKEN_KEY_CONTROL_FLOW}, {make_lit_string("const_cast") , CPP_TOKEN_KEY_CAST}, {make_lit_string("dynamic_cast") , CPP_TOKEN_KEY_CAST}, {make_lit_string("reinterpret_cast") , CPP_TOKEN_KEY_CAST}, {make_lit_string("static_cast") , CPP_TOKEN_KEY_CAST}, {make_lit_string("class") , CPP_TOKEN_KEY_TYPE_DECLARATION}, {make_lit_string("enum") , CPP_TOKEN_KEY_TYPE_DECLARATION}, {make_lit_string("struct") , CPP_TOKEN_KEY_TYPE_DECLARATION}, {make_lit_string("typedef") , CPP_TOKEN_KEY_TYPE_DECLARATION}, {make_lit_string("union") , CPP_TOKEN_KEY_TYPE_DECLARATION}, {make_lit_string("template") , CPP_TOKEN_KEY_TYPE_DECLARATION}, {make_lit_string("typename") , CPP_TOKEN_KEY_TYPE_DECLARATION}, {make_lit_string("friend") , CPP_TOKEN_KEY_ACCESS}, {make_lit_string("namespace") , CPP_TOKEN_KEY_ACCESS}, {make_lit_string("private") , CPP_TOKEN_KEY_ACCESS}, {make_lit_string("protected") , CPP_TOKEN_KEY_ACCESS}, {make_lit_string("public") , CPP_TOKEN_KEY_ACCESS}, {make_lit_string("using") , CPP_TOKEN_KEY_ACCESS}, {make_lit_string("extern") , CPP_TOKEN_KEY_LINKAGE}, {make_lit_string("export") , CPP_TOKEN_KEY_LINKAGE}, {make_lit_string("inline") , CPP_TOKEN_KEY_LINKAGE}, {make_lit_string("static") , CPP_TOKEN_KEY_LINKAGE}, {make_lit_string("virtual") , CPP_TOKEN_KEY_LINKAGE}, {make_lit_string("alignas") , CPP_TOKEN_KEY_OTHER}, {make_lit_string("explicit") , CPP_TOKEN_KEY_OTHER}, {make_lit_string("noexcept") , CPP_TOKEN_KEY_OTHER}, {make_lit_string("nullptr") , CPP_TOKEN_KEY_OTHER}, {make_lit_string("operator") , CPP_TOKEN_KEY_OTHER}, {make_lit_string("register") , CPP_TOKEN_KEY_OTHER}, {make_lit_string("this") , CPP_TOKEN_KEY_OTHER}, {make_lit_string("thread_local") , CPP_TOKEN_KEY_OTHER}, }; FCPP_LINK Cpp_Get_Token_Result cpp_get_token(Cpp_Token_Array *token_array_in, int32_t pos)/* DOC_PARAM(token_array, The array of tokens from which to get a token.) DOC_PARAM(pos, The position, measured in bytes, to get the token for.) DOC_RETURN(A Cpp_Get_Token_Result struct is returned containing the index of a token and a flag indicating whether the pos is contained in the token or in whitespace after the token.) DOC(This call performs a binary search over all of the tokens looking for the token that contains the specified position. If the position is in whitespace between the tokens, the returned token index is the index of the token immediately before the provided position. The returned index can be -1 if the position is before the first token.) DOC_SEE(Cpp_Get_Token_Result) */{ Cpp_Get_Token_Result result = {}; Cpp_Token *token_array = token_array_in->tokens; Cpp_Token *token = 0; int32_t first = 0; int32_t count = token_array_in->count; int32_t last = count; int32_t this_start = 0, next_start = 0; if (count > 0){ for (;;){ result.token_index = (first + last)/2; token = token_array + result.token_index; this_start = token->start; if (result.token_index + 1 < count){ next_start = (token + 1)->start; } else{ next_start = this_start + token->size; } if (this_start <= pos && pos < next_start){ break; } else if (pos < this_start){ last = result.token_index; } else{ first = result.token_index + 1; } if (first == last){ result.token_index = first; break; } } if (result.token_index == count){ --result.token_index; result.in_whitespace = 1; } else{ if (token->start + token->size <= pos){ result.in_whitespace = 1; } } } else{ result.token_index = -1; result.in_whitespace = 1; } return(result); } FCPP_INTERNAL Cpp_Lex_PP_State cpp_pp_directive_to_state(Cpp_Token_Type type){ Cpp_Lex_PP_State result = LSPP_default; switch (type){ case CPP_PP_INCLUDE: case CPP_PP_IMPORT: case CPP_PP_USING: result = LSPP_include; break; case CPP_PP_DEFINE: result = LSPP_macro_identifier; break; case CPP_PP_UNDEF: case CPP_PP_IFDEF: case CPP_PP_IFNDEF: result = LSPP_identifier; break; case CPP_PP_IF: case CPP_PP_ELIF: result = LSPP_body_if; break; case CPP_PP_PRAGMA: result = LSPP_body; break; case CPP_PP_LINE: result = LSPP_number; break; case CPP_PP_ERROR: result = LSPP_error; break; case CPP_PP_UNKNOWN: case CPP_PP_ELSE: case CPP_PP_ENDIF: result = LSPP_junk; break; } return(result); } // duff-routine defines #define DrCase(PC) case PC: goto resumespot_##PC #define DrYield(PC, n) { \ token_array_out->count = token_i; \ *S_ptr = S; S_ptr->__pc__ = PC; return(n); resumespot_##PC:; } #define DrReturn(n) { \ token_array_out->count = token_i; \ *S_ptr = S; S_ptr->__pc__ = -1; return(n); } FCPP_INTERNAL Cpp_Lex_Result cpp_lex_nonalloc_null_end_no_limit(Cpp_Lex_Data *S_ptr, char *chunk, int32_t size, Cpp_Token_Array *token_array_out){ Cpp_Lex_Data S = *S_ptr; Cpp_Token *out_tokens = token_array_out->tokens; int32_t token_i = token_array_out->count; int32_t max_token_i = token_array_out->max_count; uint8_t c = 0; int32_t end_pos = size + S.chunk_pos; chunk -= S.chunk_pos; switch (S.__pc__){ DrCase(1); DrCase(2); DrCase(3); DrCase(4); DrCase(5); DrCase(7); } for (;;){ S.white_done = 0; for(;;){ for (; S.pp_state < LSPP_count && S.pos < end_pos;){ c = chunk[S.pos++]; int32_t i = S.pp_state + whitespace_fsm_eq_classes[c]; S.pp_state = whitespace_fsm_table[i]; } S.white_done = (S.pp_state >= LSPP_count); if (S.white_done == 0){ S.chunk_pos += size; DrYield(4, LexResult_NeedChunk); } else break; } --S.pos; if (S.pp_state >= LSPP_count){ S.pp_state -= LSPP_count; } S.token.state_flags = S.pp_state; S.token_start = S.pos; S.tb_pos = 0; S.fsm = null_lex_fsm; for(;;){ { uint16_t *eq_classes = get_eq_classes[S.pp_state]; uint8_t *fsm_table = get_table[S.pp_state]; for (; S.fsm.state < LS_count && S.pos < end_pos;){ c = chunk[S.pos++]; S.tb[S.tb_pos++] = c; int32_t i = S.fsm.state + eq_classes[c]; S.fsm.state = fsm_table[i]; S.fsm.multi_line |= multiline_state_table[S.fsm.state]; } S.fsm.emit_token = (S.fsm.state >= LS_count); } if (S.fsm.emit_token == 0){ S.chunk_pos += size; DrYield(3, LexResult_NeedChunk); } else break; } Assert(S.fsm.emit_token == 1); if (c == 0){ S.completed = 1; } if (S.fsm.state >= LS_count){ S.fsm.state -= LS_count; } switch (S.fsm.state){ case LS_default: switch (c){ case 0: S.fsm.emit_token = 0; break; #define OperCase(op,t) case op: S.token.type = t; break; OperCase('{', CPP_TOKEN_BRACE_OPEN); OperCase('}', CPP_TOKEN_BRACE_CLOSE); OperCase('[', CPP_TOKEN_BRACKET_OPEN); OperCase(']', CPP_TOKEN_BRACKET_CLOSE); OperCase('(', CPP_TOKEN_PARENTHESE_OPEN); OperCase(')', CPP_TOKEN_PARENTHESE_CLOSE); OperCase('~', CPP_TOKEN_TILDE); OperCase(',', CPP_TOKEN_COMMA); OperCase(';', CPP_TOKEN_SEMICOLON); OperCase('?', CPP_TOKEN_TERNARY_QMARK); OperCase('@', CPP_TOKEN_JUNK); #undef OperCase case '\\': if (S.pp_state == LSPP_default){ S.token.type = CPP_TOKEN_JUNK; } else{ S.pos_overide = S.pos; S.white_done = 0; for (;;){ for (; S.white_done == 0 && S.pos < end_pos;){ c = chunk[S.pos++]; if (!(c == ' ' || c == '\t' || c == '\r' || c == '\v' || c == '\f')){ S.white_done = 1; } } if (S.white_done == 0){ S.chunk_pos += size; DrYield(1, LexResult_NeedChunk); } else break; } if (c == '\n'){ S.fsm.emit_token = 0; S.pos_overide = 0; } else{ S.token.type = CPP_TOKEN_JUNK; } } break; } if (c != '@' && c != '\\'){ S.token.flags = CPP_TFLAG_IS_OPERATOR; } break; case LS_identifier: { --S.pos; int32_t word_size = S.pos - S.token_start; if (S.pp_state == LSPP_body_if){ if (match_ss(make_string(S.tb, word_size), make_lit_string("defined"))){ S.token.type = CPP_PP_DEFINED; S.token.flags = CPP_TFLAG_IS_OPERATOR | CPP_TFLAG_IS_KEYWORD; break; } } int32_t sub_match = -1; string_set_match_table(keywords, sizeof(*keywords), ArrayCount(keywords), make_string(S.tb, S.tb_pos-1), &sub_match); if (sub_match != -1){ String_And_Flag data = keywords[sub_match]; S.token.type = (Cpp_Token_Type)data.flags; S.token.flags = CPP_TFLAG_IS_KEYWORD; } else{ S.token.type = CPP_TOKEN_IDENTIFIER; S.token.flags = 0; } }break; case LS_pound: S.token.flags = 0; switch (c){ case '#': S.token.type = CPP_PP_CONCAT; break; default: S.token.type = CPP_PP_STRINGIFY; --S.pos; break; } break; case LS_pp: { S.token.type = CPP_TOKEN_JUNK; S.token.flags = 0; --S.pos; }break; case LS_ppdef: { --S.pos; int32_t pos = S.tb_pos-1; int32_t i = 1; for (;i < pos; ++i){ if (S.tb[i] != ' '){ break; } } int32_t sub_match = -1; string_set_match_table(preprops, sizeof(*preprops), ArrayCount(preprops), make_string(S.tb+i, pos-i), &sub_match); if (sub_match != -1){ String_And_Flag data = preprops[sub_match]; S.token.type = (Cpp_Token_Type)data.flags; S.token.flags = CPP_TFLAG_PP_DIRECTIVE; S.pp_state = (uint8_t)cpp_pp_directive_to_state(S.token.type); } else{ S.token.type = CPP_TOKEN_JUNK; S.token.flags = 0; } }break; case LS_number: case LS_number0: case LS_hex: S.fsm.int_state = LSINT_default; S.fsm.emit_token = 0; --S.pos; for (;;){ for (; S.fsm.int_state < LSINT_count && S.pos < end_pos;){ c = chunk[S.pos++]; S.fsm.int_state = int_fsm_table[S.fsm.int_state + int_fsm_eq_classes[c]]; } S.fsm.emit_token = (S.fsm.int_state >= LSINT_count); if (S.fsm.emit_token == 0){ S.chunk_pos += size; DrYield(5, LexResult_NeedChunk); } else break; } --S.pos; S.token.type = CPP_TOKEN_INTEGER_CONSTANT; S.token.flags = 0; break; case LS_float: case LS_crazy_float0: case LS_crazy_float1: S.token.type = CPP_TOKEN_FLOATING_CONSTANT; S.token.flags = 0; switch (c){ case 'f': case 'F': case 'l': case 'L':break; default: --S.pos; break; } break; case LS_char: case LS_char_slashed: S.token.type = CPP_TOKEN_JUNK; if (c == '\''){ S.token.type = CPP_TOKEN_CHARACTER_CONSTANT; } S.token.flags = 0; break; case LS_char_multiline: S.token.type = CPP_TOKEN_JUNK; if (c == '\''){ S.token.type = CPP_TOKEN_CHARACTER_CONSTANT; } S.token.flags = CPP_TFLAG_MULTILINE; break; case LS_string: case LS_string_slashed: S.token.type = CPP_TOKEN_JUNK; if (S.pp_state == LSPP_include){ if (c == '>' || c == '"'){ S.token.type = CPP_PP_INCLUDE_FILE; } } else{ if (c == '"'){ S.token.type = CPP_TOKEN_STRING_CONSTANT; } } S.token.flags = 0; break; case LS_string_multiline: S.token.type = CPP_TOKEN_JUNK; if (c == '"'){ S.token.type = CPP_TOKEN_STRING_CONSTANT; } S.token.flags = CPP_TFLAG_MULTILINE; break; case LS_comment_pre: S.token.flags = CPP_TFLAG_IS_OPERATOR; switch (c){ case '=': S.token.type = CPP_TOKEN_DIVEQ; break; default: S.token.type = CPP_TOKEN_DIV; --S.pos; break; } break; case LS_comment: case LS_comment_slashed: S.token.type = CPP_TOKEN_COMMENT; S.token.flags = 0; --S.pos; break; case LS_comment_block: case LS_comment_block_ending: S.token.type = CPP_TOKEN_COMMENT; S.token.flags = 0; break; case LS_error_message: S.token.type = CPP_PP_ERROR_MESSAGE; S.token.flags = 0; --S.pos; break; case LS_dot: S.token.flags = CPP_TFLAG_IS_OPERATOR; switch (c){ case '*': S.token.type = CPP_TOKEN_PTRDOT; break; default: S.token.type = CPP_TOKEN_DOT; --S.pos; break; } break; case LS_ellipsis: switch (c){ case '.': S.token.flags = CPP_TFLAG_IS_OPERATOR; S.token.type = CPP_TOKEN_ELLIPSIS; break; default: S.token.type = CPP_TOKEN_JUNK; --S.pos; break; } break; case LS_less: S.token.flags = CPP_TFLAG_IS_OPERATOR; switch (c){ case '=': S.token.type = CPP_TOKEN_LESSEQ; break; default: S.token.type = CPP_TOKEN_LESS; --S.pos; break; } break; case LS_less_less: S.token.flags = CPP_TFLAG_IS_OPERATOR; switch (c){ case '=': S.token.type = CPP_TOKEN_LSHIFTEQ; break; default: S.token.type = CPP_TOKEN_LSHIFT; --S.pos; break; } break; case LS_more: S.token.flags = CPP_TFLAG_IS_OPERATOR; switch (c){ case '=': S.token.type = CPP_TOKEN_GRTREQ; break; default: S.token.type = CPP_TOKEN_GRTR; --S.pos; break; } break; case LS_more_more: S.token.flags = CPP_TFLAG_IS_OPERATOR; switch (c){ case '=': S.token.type = CPP_TOKEN_RSHIFTEQ; break; default: S.token.type = CPP_TOKEN_RSHIFT; --S.pos; break; } break; case LS_minus: S.token.flags = CPP_TFLAG_IS_OPERATOR; switch (c){ case '-': S.token.type = CPP_TOKEN_DECREMENT; break; case '=': S.token.type = CPP_TOKEN_SUBEQ; break; default: S.token.type = CPP_TOKEN_MINUS; --S.pos; break; } break; case LS_arrow: S.token.flags = CPP_TFLAG_IS_OPERATOR; switch (c){ case '*': S.token.type = CPP_TOKEN_PTRARROW; break; default: S.token.type = CPP_TOKEN_ARROW; --S.pos; break; } break; case LS_and: S.token.flags = CPP_TFLAG_IS_OPERATOR; switch (c){ case '&': S.token.type = CPP_TOKEN_AND; break; case '=': S.token.type = CPP_TOKEN_ANDEQ; break; default: S.token.type = CPP_TOKEN_AMPERSAND; --S.pos; break; } break; case LS_or: S.token.flags = CPP_TFLAG_IS_OPERATOR; switch (c){ case '|': S.token.type = CPP_TOKEN_OR; break; case '=': S.token.type = CPP_TOKEN_OREQ; break; default: S.token.type = CPP_TOKEN_BIT_OR; --S.pos; break; } break; case LS_plus: S.token.flags = CPP_TFLAG_IS_OPERATOR; switch (c){ case '+': S.token.type = CPP_TOKEN_INCREMENT; break; case '=': S.token.type = CPP_TOKEN_ADDEQ; break; default: S.token.type = CPP_TOKEN_PLUS; --S.pos; break; } break; case LS_colon: S.token.flags = CPP_TFLAG_IS_OPERATOR; switch (c){ case ':': S.token.type = CPP_TOKEN_SCOPE; break; default: S.token.type = CPP_TOKEN_COLON; --S.pos; break; } break; case LS_star: S.token.flags = CPP_TFLAG_IS_OPERATOR; switch (c){ case '=': S.token.type = CPP_TOKEN_MULEQ; break; default: S.token.type = CPP_TOKEN_STAR; --S.pos; break; } break; case LS_modulo: S.token.flags = CPP_TFLAG_IS_OPERATOR; switch (c){ case '=': S.token.type = CPP_TOKEN_MODEQ; break; default: S.token.type = CPP_TOKEN_MOD; --S.pos; break; } break; case LS_caret: S.token.flags = CPP_TFLAG_IS_OPERATOR; switch (c){ case '=': S.token.type = CPP_TOKEN_XOREQ; break; default: S.token.type = CPP_TOKEN_BIT_XOR; --S.pos; break; } break; case LS_eq: S.token.flags = CPP_TFLAG_IS_OPERATOR; switch (c){ case '=': S.token.type = CPP_TOKEN_EQEQ; break; default: S.token.type = CPP_TOKEN_EQ; --S.pos; break; } break; case LS_bang: S.token.flags = CPP_TFLAG_IS_OPERATOR; switch (c){ case '=': S.token.type = CPP_TOKEN_NOTEQ; break; default: S.token.type = CPP_TOKEN_NOT; --S.pos; break; } break; } if (S.pos > S.chunk_pos && chunk[S.pos-1] == 0){ --S.pos; } if ((S.token.flags & CPP_TFLAG_PP_DIRECTIVE) == 0){ switch (S.pp_state){ case LSPP_macro_identifier: if (S.fsm.state != LS_identifier){ S.token.type = CPP_TOKEN_JUNK; S.pp_state = LSPP_junk; } else{ S.pp_state = LSPP_body; } break; case LSPP_identifier: if (S.fsm.state != LS_identifier){ S.token.type = CPP_TOKEN_JUNK; } S.pp_state = LSPP_junk; break; case LSPP_number: if (S.token.type != CPP_TOKEN_INTEGER_CONSTANT){ S.token.type = CPP_TOKEN_JUNK; S.pp_state = LSPP_junk; } else{ S.pp_state = LSPP_include; } break; case LSPP_junk: if (S.token.type != CPP_TOKEN_COMMENT){ S.token.type = CPP_TOKEN_JUNK; } break; } } if (S.fsm.emit_token){ S.token.start = S.token_start; if (S.pos_overide){ S.token.size = S.pos_overide - S.token_start; S.pos_overide = 0; } else{ S.token.size = S.pos - S.token_start; } if ((S.token.flags & CPP_TFLAG_PP_DIRECTIVE) == 0){ S.token.flags |= (S.pp_state != LSPP_default)?(CPP_TFLAG_PP_BODY):(0); } out_tokens[token_i++] = S.token; if (token_i == max_token_i){ if (S.pos == end_pos){ S.chunk_pos += size; DrYield(7, LexResult_NeedChunk); } DrYield(2, LexResult_NeedTokenMemory); } } if (S.completed){ break; } } DrReturn(LexResult_Finished); } #undef DrYield #undef DrReturn #undef DrCase FCPP_INTERNAL Cpp_Lex_Result cpp_lex_nonalloc_null_end_out_limit(Cpp_Lex_Data *S_ptr, char *chunk, int32_t size, Cpp_Token_Array *token_array_out, int32_t max_tokens_out){ Cpp_Token_Array temp_array = *token_array_out; if (temp_array.max_count > temp_array.count + max_tokens_out){ temp_array.max_count = temp_array.count + max_tokens_out; } Cpp_Lex_Result result = cpp_lex_nonalloc_null_end_no_limit(S_ptr, chunk, size, &temp_array); token_array_out->count = temp_array.count; if (result == LexResult_NeedTokenMemory){ if (token_array_out->count < token_array_out->max_count){ result = LexResult_HitTokenLimit; } } return(result); } FCPP_INTERNAL Cpp_Lex_Result cpp_lex_nonalloc_no_null_no_limit(Cpp_Lex_Data *S_ptr, char *chunk, int32_t size, int32_t full_size, Cpp_Token_Array *token_array_out){ Cpp_Lex_Result result = 0; if (S_ptr->pos >= full_size){ char end_null = 0; result = cpp_lex_nonalloc_null_end_no_limit(S_ptr, &end_null, 1, token_array_out); } else{ result = cpp_lex_nonalloc_null_end_no_limit(S_ptr, chunk, size, token_array_out); if (result == LexResult_NeedChunk){ if (S_ptr->pos >= full_size){ char end_null = 0; result = cpp_lex_nonalloc_null_end_no_limit(S_ptr, &end_null, 1, token_array_out); } } } return(result); } FCPP_INTERNAL Cpp_Lex_Result cpp_lex_nonalloc_no_null_out_limit(Cpp_Lex_Data *S_ptr, char *chunk, int32_t size, int32_t full_size, Cpp_Token_Array *token_array_out, int32_t max_tokens_out){ Cpp_Token_Array temp_stack = *token_array_out; if (temp_stack.max_count > temp_stack.count + max_tokens_out){ temp_stack.max_count = temp_stack.count + max_tokens_out; } Cpp_Lex_Result result = cpp_lex_nonalloc_no_null_no_limit(S_ptr, chunk, size, full_size, &temp_stack); token_array_out->count = temp_stack.count; if (result == LexResult_NeedTokenMemory){ if (token_array_out->count < token_array_out->max_count){ result = LexResult_HitTokenLimit; } } return(result); } #define HAS_NULL_TERM ((int32_t)(-1)) #define NO_OUT_LIMIT ((int32_t)(-1)) FCPP_LINK Cpp_Lex_Result cpp_lex_step(Cpp_Lex_Data *S_ptr, char *chunk, int32_t size, int32_t full_size, Cpp_Token_Array *token_array_out, int32_t max_tokens_out)/* DOC_PARAM(S_ptr, The lexer state. Go to the Cpp_Lex_Data section to see how to initialize the state.) DOC_PARAM(chunk, The first or next chunk of the file being lexed.) DOC_PARAM(size, The number of bytes in the chunk including the null terminator if the chunk ends in a null terminator. If the chunk ends in a null terminator the system will interpret it as the end of the file.) DOC_PARAM(full_size, If the final chunk is not null terminated this parameter should specify the length of the file in bytes. To rely on an eventual null terminator use HAS_NULL_TERM for this parameter.) DOC_PARAM(token_array_out, The token array structure that will receive the tokens output by the lexer.) DOC_PARAM(max_tokens_out, The maximum number of tokens to be output to the token array. To rely on the max built into the token array pass NO_OUT_LIMIT here.) DOC(This call is the primary interface of the lexing system. It is quite general so it can be used in a lot of different ways. I will explain the general rules first, and then give some examples of common ways it might be used. First a lexing state, Cpp_Lex_Data, must be initialized. The file to lex must be read into N contiguous chunks of memory. An output Cpp_Token_Array must be allocated and initialized with the appropriate count and max_count values. Then each chunk of the file must be passed to cpp_lex_step in order using the same lexing state for each call. Every time a call to cpp_lex_step returns LexResult_NeedChunk, the next call to cpp_lex_step should use the next chunk. If the return is some other value, the lexer hasn't finished with the current chunk and it sopped for some other reason, so the same chunk should be used again in the next call. If the file chunks contain a null terminator the lexer will return LexResult_Finished when it finds this character. At this point calling the lexer again with the same state will result in an error. If you do not have a null terminated chunk to end the file, you may instead pass the exact size in bytes of the entire file to the full_size parameter and it will automatically handle the termination of the lexing state when it has read that many bytes. If a full_size is specified and the system terminates for having seen that many bytes, it will return LexResult_Finished. If a full_size is specified and a null character is read before the total number of bytes have been read the system will still terminate as usual and return LexResult_Finished. If the system has filled the entire output array it will return LexResult_NeedTokenMemory. When this happens if you want to continue lexing the file you can grow the token array, or switch to a new output array and then call cpp_lex_step again with the chunk that was being lexed and the new output. You can also specify a max_tokens_out which is limits how many new tokens will be added to the token array. Even if token_array_out still had more space to hold tokens, if the max_tokens_out limit is hit, the lexer will stop and return LexResult_HitTokenLimit. If this happens there is still space left in the token array, so you can resume simply by calling cpp_lex_step again with the same chunk and the same output array. Also note that, unlike the chunks which must only be replaced when the system says it needs a chunk. You may switch to or modify the output array in between calls as much as you like. The most basic use of this system is to get it all done in one big chunk and try to allocate a nearly "infinite" output array so that it will not run out of memory. This way you can get the entire job done in one call and then just assert to make sure it returns LexResult_Finished to you: CODE_EXAMPLE( Cpp_Token_Array lex_file(char *file_name){ File_Data file = read_whole_file(file_name); char *temp = (char*)malloc(4096); // hopefully big enough Cpp_Lex_Data lex_state = cpp_lex_data_init(temp); Cpp_Token_Array array = {0}; array.tokens = (Cpp_Token*)malloc(1 << 20); // hopefully big enough array.max_count = (1 << 20)/sizeof(Cpp_Token); Cpp_Lex_Result result = cpp_lex_step(&lex_state, file.data, file.size, file.size, &array, NO_OUT_LIMIT); Assert(result == LexResult_Finished); free(temp); return(array); }) ) DOC_SEE(Cpp_Lex_Data) */{ Cpp_Lex_Result result = 0; if (full_size == HAS_NULL_TERM){ if (max_tokens_out == NO_OUT_LIMIT){ result = cpp_lex_nonalloc_null_end_no_limit(S_ptr, chunk, size, token_array_out); } else{ result = cpp_lex_nonalloc_null_end_out_limit(S_ptr, chunk, size, token_array_out, max_tokens_out); } } else{ if (max_tokens_out == NO_OUT_LIMIT){ result = cpp_lex_nonalloc_no_null_no_limit(S_ptr, chunk, size, full_size, token_array_out); } else{ result = cpp_lex_nonalloc_no_null_out_limit(S_ptr, chunk, size, full_size, token_array_out, max_tokens_out); } } return(result); } FCPP_LINK Cpp_Lex_Data cpp_lex_data_init(char *mem_buffer)/* DOC_PARAM(mem_buffer, The memory to use for initializing the lex state's temp memory buffer.) DOC_RETURN(A brand new lex state ready to begin lexing a file from the beginning.) DOC(Creates a new lex state in the form of a Cpp_Lex_Data struct and returns the struct. The system needs a temporary buffer that is as long as the longest token. 4096 is usually enough but the buffer is not checked, so to be 100% bullet proof it has to be the same length as the file being lexed.) */{ Cpp_Lex_Data data = {0}; data.tb = mem_buffer; return(data); } FCPP_LINK int32_t cpp_lex_data_temp_size(Cpp_Lex_Data *lex_data)/* DOC_PARAM(lex_data, The lex state from which to get the temporary buffer size.) DOC(This call gets the current size of the temporary buffer in the lexer state so that you can move to a new temporary buffer by copying the data over.) DOC_SEE(cpp_lex_data_temp_read) DOC_SEE(cpp_lex_data_new_temp) */{ int32_t result = lex_data->tb_pos; Assert(lex_data->tb != 0); return(result); } FCPP_LINK void cpp_lex_data_temp_read(Cpp_Lex_Data *lex_data, char *out_buffer)/* DOC_PARAM(lex_data, The lex state from which to read the temporary buffer.) DOC_PARAM(out_buffer, The buffer into which the contents of the temporary buffer will be written. The size of the buffer must be at least the size as returned by cpp_lex_data_temp_size.) DOC(This call reads the current contents of the temporary buffer.) DOC_SEE(cpp_lex_data_temp_size) DOC_SEE(cpp_lex_data_new_temp) */{ int32_t size = lex_data->tb_pos; char *src = lex_data->tb; char *end = src + size; for (; src < end; ++src, ++out_buffer){ *out_buffer = *src; } } FCPP_LINK void cpp_lex_data_new_temp(Cpp_Lex_Data *lex_data, char *new_buffer)/* DOC_PARAM(lex_data, The lex state that will receive the new temporary buffer.) DOC_PARAM(new_buffer, The new temporary buffer that has the same contents as the old temporary buffer.) DOC(This call can be used to set a new temporary buffer for the lex state. In cases where you want to discontinue lexing, store the state, and resume later. In such a situation it may be necessary for you to free the temp buffer that was originally used to make the lex state. This call allows you to supply a new temp buffer when you are ready to resume lexing. However the new buffer needs to have the same contents the old buffer had. To ensure this you have to use cpp_lex_data_temp_size and cpp_lex_data_temp_read to get the relevant contents of the temp buffer before you free it.) DOC_SEE(cpp_lex_data_temp_size) DOC_SEE(cpp_lex_data_temp_read) */{ lex_data->tb = new_buffer; } FCPP_INTERNAL char cpp_token_get_pp_state(uint16_t bitfield){ return (char)(bitfield); } FCPP_INTERNAL void cpp_shift_token_starts(Cpp_Token_Array *array, int32_t from_token_i, int32_t shift_amount){ Cpp_Token *token = array->tokens + from_token_i; int32_t count = array->count, i = 0; for (i = from_token_i; i < count; ++i, ++token){ token->start += shift_amount; } } FCPP_INTERNAL Cpp_Token cpp_index_array(Cpp_Token_Array *array, int32_t file_size, int32_t index){ Cpp_Token result; if (index < array->count){ result = array->tokens[index]; } else{ result.start = file_size; result.size = 0; result.type = CPP_TOKEN_EOF; result.flags = 0; result.state_flags = 0; } return(result); } FCPP_INTERNAL Cpp_Relex_Range cpp_get_relex_range(Cpp_Token_Array *array, int32_t start_pos, int32_t end_pos){ Cpp_Relex_Range range = {0}; Cpp_Get_Token_Result get_result = {0}; get_result = cpp_get_token(array, start_pos); range.start_token_index = get_result.token_index-1; if (range.start_token_index < 0){ range.start_token_index = 0; } get_result = cpp_get_token(array, end_pos); range.end_token_index = get_result.token_index; if (end_pos > array->tokens[range.end_token_index].start){ ++range.end_token_index; } if (range.end_token_index < 0){ range.end_token_index = 0; } return(range); } FCPP_LINK Cpp_Relex_Data cpp_relex_init(Cpp_Token_Array *array, int32_t start_pos, int32_t end_pos, int32_t character_shift_amount, char *spare) { Cpp_Relex_Data state = {0}; Cpp_Relex_Range range = cpp_get_relex_range(array, start_pos, end_pos); state.start_token_index = range.start_token_index; state.end_token_index = range.end_token_index; state.original_end_token_index = range.end_token_index; state.relex_start_position = array->tokens[state.start_token_index].start; if (start_pos < state.relex_start_position){ state.relex_start_position = start_pos; } state.character_shift_amount = character_shift_amount; state.lex = cpp_lex_data_init(spare); state.lex.pp_state = cpp_token_get_pp_state(array->tokens[state.start_token_index].state_flags); state.lex.pos = state.relex_start_position; return(state); } FCPP_LINK int32_t cpp_relex_start_position(Cpp_Relex_Data *S_ptr){ int32_t result = S_ptr->relex_start_position; return(result); } FCPP_LINK void cpp_relex_declare_first_chunk_position(Cpp_Relex_Data *S_ptr, int32_t position){ S_ptr->lex.chunk_pos = position; } FCPP_LINK int32_t cpp_relex_is_start_chunk(Cpp_Relex_Data *S_ptr, char *chunk, int32_t chunk_size){ int32_t pos = S_ptr->relex_start_position; int32_t start = S_ptr->lex.chunk_pos; int32_t end = start + chunk_size; int32_t good_chunk = 0; if (start <= pos && pos < end){ good_chunk = 1; } else{ if (chunk == 0){ good_chunk = 1; S_ptr->lex.chunk_pos = pos; } else{ S_ptr->lex.chunk_pos += chunk_size; } } return(good_chunk); } // duff-routine defines #define DrCase(PC) case PC: goto resumespot_##PC #define DrYield(PC, n) { \ S_ptr->result_state = n; \ *S_ptr = S; S_ptr->__pc__ = PC; return(n); resumespot_##PC:; } #define DrReturn(n) { \ S_ptr->result_state = n; \ *S_ptr = S; S_ptr->__pc__ = -1; return(n); } FCPP_LINK Cpp_Lex_Result cpp_relex_step(Cpp_Relex_Data *S_ptr, char *chunk, int32_t chunk_size, int32_t full_size, Cpp_Token_Array *array, Cpp_Token_Array *relex_array){ Cpp_Relex_Data S = *S_ptr; switch (S.__pc__){ DrCase(1); DrCase(2); } cpp_shift_token_starts(array, S.end_token_index, S.character_shift_amount); S.end_token = cpp_index_array(array, full_size, S.end_token_index); // TODO(allen): This can be better I suspect. for (;;){ Cpp_Lex_Result step_result = cpp_lex_nonalloc_no_null_out_limit(&S.lex, chunk, chunk_size, full_size, relex_array, 1); switch (step_result){ case LexResult_HitTokenLimit: { Cpp_Token token = relex_array->tokens[relex_array->count-1]; if (token.type == S.end_token.type && token.start == S.end_token.start && token.size == S.end_token.size && token.flags == S.end_token.flags && token.state_flags == S.end_token.state_flags){ --relex_array->count; goto double_break; } while (S.lex.pos > S.end_token.start && S.end_token_index < array->count){ ++S.end_token_index; S.end_token = cpp_index_array(array, full_size, S.end_token_index); } } break; case LexResult_NeedChunk: DrYield(1, LexResult_NeedChunk); break; case LexResult_NeedTokenMemory: DrYield(2, LexResult_NeedTokenMemory); break; case LexResult_Finished: goto double_break; } } double_break:; DrReturn(LexResult_Finished); } #undef DrYield #undef DrReturn #undef DrCase FCPP_LINK int32_t cpp_relex_get_new_count(Cpp_Relex_Data *S_ptr, int32_t current_count, Cpp_Token_Array *relex_array){ int32_t result = -1; if (S_ptr->result_state == LexResult_Finished){ int32_t delete_amount = S_ptr->end_token_index - S_ptr->start_token_index; int32_t shift_amount = relex_array->count - delete_amount; result = current_count + shift_amount; } return(result); } #if !defined(FCPP_FORBID_MEMCPY) #include #endif FCPP_INTERNAL void cpp__block_move(void *dst, void *src, int32_t size){ #if !defined(FCPP_FORBID_MEMCPY) memmove(dst, src, size); #else // TODO(allen): find a way to write a fast one of these. uint8_t *d = (uint8_t*)dst, *s = (uint8_t*)src; if (d < s || d >= s + size){ for (; size > 0; --size){ *(d++) = *(s++); } } else{ d += size - 1; s += size - 1; for (; size > 0; --size){ *(d--) = *(s--); } } #endif } FCPP_LINK void cpp_relex_complete(Cpp_Relex_Data *S_ptr, Cpp_Token_Array *array, Cpp_Token_Array *relex_array){ int32_t delete_amount = S_ptr->end_token_index - S_ptr->start_token_index; int32_t shift_amount = relex_array->count - delete_amount; if (shift_amount != 0){ int32_t shift_size = array->count - S_ptr->end_token_index; if (shift_size > 0){ Cpp_Token *old_base = array->tokens + S_ptr->end_token_index; cpp__block_move(old_base + shift_amount, old_base, sizeof(Cpp_Token)*shift_size); } array->count += shift_amount; } cpp__block_move(array->tokens + S_ptr->start_token_index, relex_array->tokens, sizeof(Cpp_Token)*relex_array->count); } FCPP_LINK void cpp_relex_abort(Cpp_Relex_Data *S_ptr, Cpp_Token_Array *array){ cpp_shift_token_starts(array, S_ptr->original_end_token_index, -S_ptr->character_shift_amount); } #if !defined(FCPP_FORBID_MALLOC) #include #include FCPP_LINK Cpp_Token_Array cpp_make_token_array(int32_t starting_max)/* DOC_PARAM(starting_max, The number of tokens to initialize the array with.) DOC_RETURN(An empty Cpp_Token_Array with memory malloc'd for storing tokens.) DOC(This call allocates a Cpp_Token_Array with malloc for use in other convenience functions. Stacks that are not allocated this way should not be used in the convenience functions.) */{ Cpp_Token_Array token_array; token_array.tokens = (Cpp_Token*)malloc(sizeof(Cpp_Token)*starting_max); token_array.count = 0; token_array.max_count = starting_max; return(token_array); } FCPP_LINK void cpp_free_token_array(Cpp_Token_Array token_array)/* DOC_PARAM(token_array, An array previously allocated by cpp_make_token_array) DOC(This call frees a Cpp_Token_Array.) DOC_SEE(cpp_make_token_array) */{ free(token_array.tokens); } FCPP_LINK void cpp_resize_token_array(Cpp_Token_Array *token_array, int32_t new_max)/* DOC_PARAM(token_array, An array previously allocated by cpp_make_token_array.) DOC_PARAM(new_max, The new maximum size the array should support. If this is not greater than the current size of the array the operation is ignored.) DOC(This call allocates a new memory chunk and moves the existing tokens in the array over to the new chunk.) DOC_SEE(cpp_make_token_array) */{ if (new_max > token_array->count){ Cpp_Token *new_tokens = (Cpp_Token*)malloc(sizeof(Cpp_Token)*new_max); if (new_tokens){ memcpy(new_tokens, token_array->tokens, sizeof(Cpp_Token)*token_array->count); free(token_array->tokens); token_array->tokens = new_tokens; token_array->max_count = new_max; } } } FCPP_LINK void cpp_lex_file(char *data, int32_t size, Cpp_Token_Array *token_array_out)/* DOC_PARAM(data, The file data to be lexed in a single contiguous block.) DOC_PARAM(size, The number of bytes in data.) DOC_PARAM(token_array_out, The token array where the output tokens will be pushed. This token array must be previously allocated with cpp_make_token_array) DOC(Lexes an entire file and manages the interaction with the lexer system so that it is quick and convenient to lex files. CODE_EXAMPLE( Cpp_Token_Array lex_file(char *file_name){ File_Data file = read_whole_file(file_name); // This array will be automatically grown if it runs // out of memory. Cpp_Token_Array array = cpp_make_token_array(100); cpp_lex_file(file.data, file.size, &array); return(array); }) ) DOC_SEE(cpp_make_token_array) */{ Cpp_Lex_Data S = {0}; S.tb = (char*)malloc(size); int32_t quit = 0; char empty = 0; token_array_out->count = 0; for (;!quit;){ int32_t result = cpp_lex_step(&S, data, size, HAS_NULL_TERM, token_array_out, NO_OUT_LIMIT); switch (result){ case LexResult_Finished: { quit = 1; }break; case LexResult_NeedChunk: { Assert(token_array_out->count < token_array_out->max_count); // NOTE(allen): We told the system we would provide the null // terminator, but as it turned out we didn't actually. So in // the next iteration pass a 1 byte chunk with the null terminator. data = ∅ size = 1; }break; case LexResult_NeedTokenMemory: { // NOTE(allen): We told the system to use all of the output memory // but we ran out anyway, so allocate more memory. We hereby assume // the stack was allocated using cpp_make_token_array. int32_t new_max = 2*token_array_out->max_count + 1; cpp_resize_token_array(token_array_out, new_max); }break; } } free(S.tb); } #endif #endif // BOTTOM