/*** * imminitrin.h - Meta Header file for Intel(R) Architecture intrinsic functions. * * Copyright (C) 1985-2011 Intel Corporation. All rights reserved. * * The information and source code contained herein is the exclusive * property of Intel Corporation and may not be disclosed, examined * or reproduced in whole or in part without explicit written authorization * from the company. * * *******************************************************************************/ #pragma once #ifndef __midl #ifndef _INCLUDED_IMM #define _INCLUDED_IMM #if defined (_M_CEE_PURE) #error ERROR: Intel Architecture intrinsic functions not supported in the pure mode! #else /* defined (_M_CEE_PURE) */ #include #ifdef __cplusplus extern "C" { #endif /* __cplusplus */ /* * Intel(R) AVX compiler intrinsic functions. */ typedef union __declspec(intrin_type) _CRT_ALIGN(32) __m256 { float m256_f32[8]; } __m256; typedef struct __declspec(intrin_type) _CRT_ALIGN(32) __m256d { double m256d_f64[4]; } __m256d; typedef union __declspec(intrin_type) _CRT_ALIGN(32) __m256i { __int8 m256i_i8[32]; __int16 m256i_i16[16]; __int32 m256i_i32[8]; __int64 m256i_i64[4]; unsigned __int8 m256i_u8[32]; unsigned __int16 m256i_u16[16]; unsigned __int32 m256i_u32[8]; unsigned __int64 m256i_u64[4]; } __m256i; /* * Compare predicates for scalar and packed compare intrinsic functions */ #define _CMP_EQ_OQ 0x00 /* Equal (ordered, nonsignaling) */ #define _CMP_LT_OS 0x01 /* Less-than (ordered, signaling) */ #define _CMP_LE_OS 0x02 /* Less-than-or-equal (ordered, signaling) */ #define _CMP_UNORD_Q 0x03 /* Unordered (nonsignaling) */ #define _CMP_NEQ_UQ 0x04 /* Not-equal (unordered, nonsignaling) */ #define _CMP_NLT_US 0x05 /* Not-less-than (unordered, signaling) */ #define _CMP_NLE_US 0x06 /* Not-less-than-or-equal (unordered, signaling) */ #define _CMP_ORD_Q 0x07 /* Ordered (nonsignaling) */ #define _CMP_EQ_UQ 0x08 /* Equal (unordered, non-signaling) */ #define _CMP_NGE_US 0x09 /* Not-greater-than-or-equal (unordered, signaling) */ #define _CMP_NGT_US 0x0A /* Not-greater-than (unordered, signaling) */ #define _CMP_FALSE_OQ 0x0B /* False (ordered, nonsignaling) */ #define _CMP_NEQ_OQ 0x0C /* Not-equal (ordered, non-signaling) */ #define _CMP_GE_OS 0x0D /* Greater-than-or-equal (ordered, signaling) */ #define _CMP_GT_OS 0x0E /* Greater-than (ordered, signaling) */ #define _CMP_TRUE_UQ 0x0F /* True (unordered, non-signaling) */ #define _CMP_EQ_OS 0x10 /* Equal (ordered, signaling) */ #define _CMP_LT_OQ 0x11 /* Less-than (ordered, nonsignaling) */ #define _CMP_LE_OQ 0x12 /* Less-than-or-equal (ordered, nonsignaling) */ #define _CMP_UNORD_S 0x13 /* Unordered (signaling) */ #define _CMP_NEQ_US 0x14 /* Not-equal (unordered, signaling) */ #define _CMP_NLT_UQ 0x15 /* Not-less-than (unordered, nonsignaling) */ #define _CMP_NLE_UQ 0x16 /* Not-less-than-or-equal (unordered, nonsignaling) */ #define _CMP_ORD_S 0x17 /* Ordered (signaling) */ #define _CMP_EQ_US 0x18 /* Equal (unordered, signaling) */ #define _CMP_NGE_UQ 0x19 /* Not-greater-than-or-equal (unordered, nonsignaling) */ #define _CMP_NGT_UQ 0x1A /* Not-greater-than (unordered, nonsignaling) */ #define _CMP_FALSE_OS 0x1B /* False (ordered, signaling) */ #define _CMP_NEQ_OS 0x1C /* Not-equal (ordered, signaling) */ #define _CMP_GE_OQ 0x1D /* Greater-than-or-equal (ordered, nonsignaling) */ #define _CMP_GT_OQ 0x1E /* Greater-than (ordered, nonsignaling) */ #define _CMP_TRUE_US 0x1F /* True (unordered, signaling) */ /* * Add Packed Double Precision Floating-Point Values * **** VADDPD ymm1, ymm2, ymm3/m256 * Performs an SIMD add of the four packed double-precision floating-point * values from the first source operand to the second source operand, and * stores the packed double-precision floating-point results in the * destination */ extern __m256d __cdecl _mm256_add_pd(__m256d, __m256d); /* * Add Packed Single Precision Floating-Point Values * **** VADDPS ymm1, ymm2, ymm3/m256 * Performs an SIMD add of the eight packed single-precision floating-point * values from the first source operand to the second source operand, and * stores the packed single-precision floating-point results in the * destination */ extern __m256 __cdecl _mm256_add_ps(__m256, __m256); /* * Add/Subtract Double Precision Floating-Point Values * **** VADDSUBPD ymm1, ymm2, ymm3/m256 * Adds odd-numbered double-precision floating-point values of the first * source operand with the corresponding double-precision floating-point * values from the second source operand; stores the result in the odd-numbered * values of the destination. Subtracts the even-numbered double-precision * floating-point values from the second source operand from the corresponding * double-precision floating values in the first source operand; stores the * result into the even-numbered values of the destination */ extern __m256d __cdecl _mm256_addsub_pd(__m256d, __m256d); /* * Add/Subtract Packed Single Precision Floating-Point Values * **** VADDSUBPS ymm1, ymm2, ymm3/m256 * Adds odd-numbered single-precision floating-point values of the first source * operand with the corresponding single-precision floating-point values from * the second source operand; stores the result in the odd-numbered values of * the destination. Subtracts the even-numbered single-precision floating-point * values from the second source operand from the corresponding * single-precision floating values in the first source operand; stores the * result into the even-numbered values of the destination */ extern __m256 __cdecl _mm256_addsub_ps(__m256, __m256); /* * Bitwise Logical AND of Packed Double Precision Floating-Point Values * **** VANDPD ymm1, ymm2, ymm3/m256 * Performs a bitwise logical AND of the four packed double-precision * floating-point values from the first source operand and the second * source operand, and stores the result in the destination */ extern __m256d __cdecl _mm256_and_pd(__m256d, __m256d); /* * Bitwise Logical AND of Packed Single Precision Floating-Point Values * **** VANDPS ymm1, ymm2, ymm3/m256 * Performs a bitwise logical AND of the eight packed single-precision * floating-point values from the first source operand and the second * source operand, and stores the result in the destination */ extern __m256 __cdecl _mm256_and_ps(__m256, __m256); /* * Bitwise Logical AND NOT of Packed Double Precision Floating-Point Values * **** VANDNPD ymm1, ymm2, ymm3/m256 * Performs a bitwise logical AND NOT of the four packed double-precision * floating-point values from the first source operand and the second source * operand, and stores the result in the destination */ extern __m256d __cdecl _mm256_andnot_pd(__m256d, __m256d); /* * Bitwise Logical AND NOT of Packed Single Precision Floating-Point Values * **** VANDNPS ymm1, ymm2, ymm3/m256 * Performs a bitwise logical AND NOT of the eight packed single-precision * floating-point values from the first source operand and the second source * operand, and stores the result in the destination */ extern __m256 __cdecl _mm256_andnot_ps(__m256, __m256); /* * Blend Packed Double Precision Floating-Point Values * **** VBLENDPD ymm1, ymm2, ymm3/m256, imm8 * Double-Precision Floating-Point values from the second source operand are * conditionally merged with values from the first source operand and written * to the destination. The immediate bits [3:0] determine whether the * corresponding Double-Precision Floating Point value in the destination is * copied from the second source or first source. If a bit in the mask, * corresponding to a word, is "1", then the Double-Precision Floating-Point * value in the second source operand is copied, else the value in the first * source operand is copied */ extern __m256d __cdecl _mm256_blend_pd(__m256d, __m256d, const int); /* * Blend Packed Single Precision Floating-Point Values * **** VBLENDPS ymm1, ymm2, ymm3/m256, imm8 * Single precision floating point values from the second source operand are * conditionally merged with values from the first source operand and written * to the destination. The immediate bits [7:0] determine whether the * corresponding single precision floating-point value in the destination is * copied from the second source or first source. If a bit in the mask, * corresponding to a word, is "1", then the single-precision floating-point * value in the second source operand is copied, else the value in the first * source operand is copied */ extern __m256 __cdecl _mm256_blend_ps(__m256, __m256, const int); /* * Blend Packed Double Precision Floating-Point Values * **** VBLENDVPD ymm1, ymm2, ymm3/m256, ymm4 * Conditionally copy each quadword data element of double-precision * floating-point value from the second source operand (third operand) and the * first source operand (second operand) depending on mask bits defined in the * mask register operand (fourth operand). */ extern __m256d __cdecl _mm256_blendv_pd(__m256d, __m256d, __m256d); /* * Blend Packed Single Precision Floating-Point Values * **** VBLENDVPS ymm1, ymm2, ymm3/m256, ymm4 * Conditionally copy each dword data element of single-precision * floating-point value from the second source operand (third operand) and the * first source operand (second operand) depending on mask bits defined in the * mask register operand (fourth operand). */ extern __m256 __cdecl _mm256_blendv_ps(__m256, __m256, __m256); /* * Divide Packed Double-Precision Floating-Point Values * **** VDIVPD ymm1, ymm2, ymm3/m256 * Performs an SIMD divide of the four packed double-precision floating-point * values in the first source operand by the four packed double-precision * floating-point values in the second source operand */ extern __m256d __cdecl _mm256_div_pd(__m256d, __m256d); /* * Divide Packed Single-Precision Floating-Point Values * **** VDIVPS ymm1, ymm2, ymm3/m256 * Performs an SIMD divide of the eight packed single-precision * floating-point values in the first source operand by the eight packed * single-precision floating-point values in the second source operand */ extern __m256 __cdecl _mm256_div_ps(__m256, __m256); /* * Dot Product of Packed Single-Precision Floating-Point Values * **** VDPPS ymm1, ymm2, ymm3/m256, imm8 * Multiplies the packed single precision floating point values in the * first source operand with the packed single-precision floats in the * second source. Each of the four resulting single-precision values is * conditionally summed depending on a mask extracted from the high 4 bits * of the immediate operand. This sum is broadcast to each of 4 positions * in the destination if the corresponding bit of the mask selected from * the low 4 bits of the immediate operand is "1". If the corresponding * low bit 0-3 of the mask is zero, the destination is set to zero. * The process is replicated for the high elements of the destination. */ extern __m256 __cdecl _mm256_dp_ps(__m256, __m256, const int); /* * Add Horizontal Double Precision Floating-Point Values * **** VHADDPD ymm1, ymm2, ymm3/m256 * Adds pairs of adjacent double-precision floating-point values in the * first source operand and second source operand and stores results in * the destination */ extern __m256d __cdecl _mm256_hadd_pd(__m256d, __m256d); /* * Add Horizontal Single Precision Floating-Point Values * **** VHADDPS ymm1, ymm2, ymm3/m256 * Adds pairs of adjacent single-precision floating-point values in the * first source operand and second source operand and stores results in * the destination */ extern __m256 __cdecl _mm256_hadd_ps(__m256, __m256); /* * Subtract Horizontal Double Precision Floating-Point Values * **** VHSUBPD ymm1, ymm2, ymm3/m256 * Subtract pairs of adjacent double-precision floating-point values in * the first source operand and second source operand and stores results * in the destination */ extern __m256d __cdecl _mm256_hsub_pd(__m256d, __m256d); /* * Subtract Horizontal Single Precision Floating-Point Values * **** VHSUBPS ymm1, ymm2, ymm3/m256 * Subtract pairs of adjacent single-precision floating-point values in * the first source operand and second source operand and stores results * in the destination. */ extern __m256 __cdecl _mm256_hsub_ps(__m256, __m256); /* * Maximum of Packed Double Precision Floating-Point Values * **** VMAXPD ymm1, ymm2, ymm3/m256 * Performs an SIMD compare of the packed double-precision floating-point * values in the first source operand and the second source operand and * returns the maximum value for each pair of values to the destination */ extern __m256d __cdecl _mm256_max_pd(__m256d, __m256d); /* * Maximum of Packed Single Precision Floating-Point Values * **** VMAXPS ymm1, ymm2, ymm3/m256 * Performs an SIMD compare of the packed single-precision floating-point * values in the first source operand and the second source operand and * returns the maximum value for each pair of values to the destination */ extern __m256 __cdecl _mm256_max_ps(__m256, __m256); /* * Minimum of Packed Double Precision Floating-Point Values * **** VMINPD ymm1, ymm2, ymm3/m256 * Performs an SIMD compare of the packed double-precision floating-point * values in the first source operand and the second source operand and * returns the minimum value for each pair of values to the destination */ extern __m256d __cdecl _mm256_min_pd(__m256d, __m256d); /* * Minimum of Packed Single Precision Floating-Point Values * **** VMINPS ymm1, ymm2, ymm3/m256 * Performs an SIMD compare of the packed single-precision floating-point * values in the first source operand and the second source operand and * returns the minimum value for each pair of values to the destination */ extern __m256 __cdecl _mm256_min_ps(__m256, __m256); /* * Multiply Packed Double Precision Floating-Point Values * **** VMULPD ymm1, ymm2, ymm3/m256 * Performs a SIMD multiply of the four packed double-precision floating-point * values from the first Source operand to the Second Source operand, and * stores the packed double-precision floating-point results in the * destination */ extern __m256d __cdecl _mm256_mul_pd(__m256d, __m256d); /* * Multiply Packed Single Precision Floating-Point Values * **** VMULPS ymm1, ymm2, ymm3/m256 * Performs an SIMD multiply of the eight packed single-precision * floating-point values from the first source operand to the second source * operand, and stores the packed double-precision floating-point results in * the destination */ extern __m256 __cdecl _mm256_mul_ps(__m256, __m256); /* * Bitwise Logical OR of Packed Double Precision Floating-Point Values * **** VORPD ymm1, ymm2, ymm3/m256 * Performs a bitwise logical OR of the four packed double-precision * floating-point values from the first source operand and the second * source operand, and stores the result in the destination */ extern __m256d __cdecl _mm256_or_pd(__m256d, __m256d); /* * Bitwise Logical OR of Packed Single Precision Floating-Point Values * **** VORPS ymm1, ymm2, ymm3/m256 * Performs a bitwise logical OR of the eight packed single-precision * floating-point values from the first source operand and the second * source operand, and stores the result in the destination */ extern __m256 __cdecl _mm256_or_ps(__m256, __m256); /* * Shuffle Packed Double Precision Floating-Point Values * **** VSHUFPD ymm1, ymm2, ymm3/m256, imm8 * Moves either of the two packed double-precision floating-point values from * each double quadword in the first source operand into the low quadword * of each double quadword of the destination; moves either of the two packed * double-precision floating-point values from the second source operand into * the high quadword of each double quadword of the destination operand. * The selector operand determines which values are moved to the destination */ extern __m256d __cdecl _mm256_shuffle_pd(__m256d, __m256d, const int); /* * Shuffle Packed Single Precision Floating-Point Values * **** VSHUFPS ymm1, ymm2, ymm3/m256, imm8 * Moves two of the four packed single-precision floating-point values * from each double qword of the first source operand into the low * quadword of each double qword of the destination; moves two of the four * packed single-precision floating-point values from each double qword of * the second source operand into to the high quadword of each double qword * of the destination. The selector operand determines which values are moved * to the destination. */ extern __m256 __cdecl _mm256_shuffle_ps(__m256, __m256, const int); /* * Subtract Packed Double Precision Floating-Point Values * **** VSUBPD ymm1, ymm2, ymm3/m256 * Performs an SIMD subtract of the four packed double-precision floating-point * values of the second Source operand from the first Source operand, and * stores the packed double-precision floating-point results in the destination */ extern __m256d __cdecl _mm256_sub_pd(__m256d, __m256d); /* * Subtract Packed Single Precision Floating-Point Values * **** VSUBPS ymm1, ymm2, ymm3/m256 * Performs an SIMD subtract of the eight packed single-precision * floating-point values in the second Source operand from the First Source * operand, and stores the packed single-precision floating-point results in * the destination */ extern __m256 __cdecl _mm256_sub_ps(__m256, __m256); /* * Bitwise Logical XOR of Packed Double Precision Floating-Point Values * **** VXORPD ymm1, ymm2, ymm3/m256 * Performs a bitwise logical XOR of the four packed double-precision * floating-point values from the first source operand and the second * source operand, and stores the result in the destination */ extern __m256d __cdecl _mm256_xor_pd(__m256d, __m256d); /* * Bitwise Logical XOR of Packed Single Precision Floating-Point Values * **** VXORPS ymm1, ymm2, ymm3/m256 * Performs a bitwise logical XOR of the eight packed single-precision * floating-point values from the first source operand and the second * source operand, and stores the result in the destination */ extern __m256 __cdecl _mm256_xor_ps(__m256, __m256); /* * Compare Packed Double-Precision Floating-Point Values * **** VCMPPD xmm1, xmm2, xmm3/m128, imm8 * **** VCMPPD ymm1, ymm2, ymm3/m256, imm8 * Performs an SIMD compare of the four packed double-precision floating-point * values in the second source operand (third operand) and the first source * operand (second operand) and returns the results of the comparison to the * destination operand (first operand). The comparison predicate operand * (immediate) specifies the type of comparison performed on each of the pairs * of packed values. * For 128-bit intrinsic function with compare predicate values in range 0-7 * compiler may generate SSE2 instructions if it is warranted for performance * reasons. */ extern __m128d __cdecl _mm_cmp_pd(__m128d, __m128d, const int); extern __m256d __cdecl _mm256_cmp_pd(__m256d, __m256d, const int); /* * Compare Packed Single-Precision Floating-Point Values * **** VCMPPS xmm1, xmm2, xmm3/m256, imm8 * **** VCMPPS ymm1, ymm2, ymm3/m256, imm8 * Performs a SIMD compare of the packed single-precision floating-point values * in the second source operand (third operand) and the first source operand * (second operand) and returns the results of the comparison to the * destination operand (first operand). The comparison predicate operand * (immediate) specifies the type of comparison performed on each of the pairs * of packed values. * For 128-bit intrinsic function with compare predicate values in range 0-7 * compiler may generate SSE2 instructions if it is warranted for performance * reasons. */ extern __m128 __cdecl _mm_cmp_ps(__m128, __m128, const int); extern __m256 __cdecl _mm256_cmp_ps(__m256, __m256, const int); /* * Compare Scalar Double-Precision Floating-Point Values * **** VCMPSD xmm1, xmm2, xmm3/m64, imm8 * Compares the low double-precision floating-point values in the second source * operand (third operand) and the first source operand (second operand) and * returns the results in of the comparison to the destination operand (first * operand). The comparison predicate operand (immediate operand) specifies the * type of comparison performed. * For compare predicate values in range 0-7 compiler may generate SSE2 * instructions if it is warranted for performance reasons. */ extern __m128d __cdecl _mm_cmp_sd(__m128d, __m128d, const int); /* * Compare Scalar Single-Precision Floating-Point Values * **** VCMPSS xmm1, xmm2, xmm3/m64, imm8 * Compares the low single-precision floating-point values in the second source * operand (third operand) and the first source operand (second operand) and * returns the results of the comparison to the destination operand (first * operand). The comparison predicate operand (immediate operand) specifies * the type of comparison performed. * For compare predicate values in range 0-7 compiler may generate SSE2 * instructions if it is warranted for performance reasons. */ extern __m128 __cdecl _mm_cmp_ss(__m128, __m128, const int); /* * Convert Packed Doubleword Integers to * Packed Double-Precision Floating-Point Values * **** VCVTDQ2PD ymm1, xmm2/m128 * Converts four packed signed doubleword integers in the source operand to * four packed double-precision floating-point values in the destination */ extern __m256d __cdecl _mm256_cvtepi32_pd(__m128i); /* * Convert Packed Doubleword Integers to * Packed Single-Precision Floating-Point Values * **** VCVTDQ2PS ymm1, ymm2/m256 * Converts eight packed signed doubleword integers in the source operand to * eight packed double-precision floating-point values in the destination */ extern __m256 __cdecl _mm256_cvtepi32_ps(__m256i); /* * Convert Packed Double-Precision Floating-point values to * Packed Single-Precision Floating-Point Values * **** VCVTPD2PS xmm1, ymm2/m256 * Converts four packed double-precision floating-point values in the source * operand to four packed single-precision floating-point values in the * destination */ extern __m128 __cdecl _mm256_cvtpd_ps(__m256d); /* * Convert Packed Single Precision Floating-Point Values to * Packed Singed Doubleword Integer Values * **** VCVTPS2DQ ymm1, ymm2/m256 * Converts eight packed single-precision floating-point values in the source * operand to eight signed doubleword integers in the destination */ extern __m256i __cdecl _mm256_cvtps_epi32(__m256); /* * Convert Packed Single Precision Floating-point values to * Packed Double Precision Floating-Point Values * **** VCVTPS2PD ymm1, xmm2/m128 * Converts four packed single-precision floating-point values in the source * operand to four packed double-precision floating-point values in the * destination */ extern __m256d __cdecl _mm256_cvtps_pd(__m128); /* * Convert with Truncation Packed Double-Precision Floating-Point values to * Packed Doubleword Integers * **** VCVTTPD2DQ xmm1, ymm2/m256 * Converts four packed double-precision floating-point values in the source * operand to four packed signed doubleword integers in the destination. * When a conversion is inexact, a truncated (round toward zero) value is * returned. If a converted result is larger than the maximum signed doubleword * integer, the floating-point invalid exception is raised, and if this * exception is masked, the indefinite integer value (80000000H) is returned */ extern __m128i __cdecl _mm256_cvttpd_epi32(__m256d); /* * Convert Packed Double-Precision Floating-point values to * Packed Doubleword Integers * **** VCVTPD2DQ xmm1, ymm2/m256 * Converts four packed double-precision floating-point values in the source * operand to four packed signed doubleword integers in the destination */ extern __m128i __cdecl _mm256_cvtpd_epi32(__m256d); /* * Convert with Truncation Packed Single Precision Floating-Point Values to * Packed Singed Doubleword Integer Values * **** VCVTTPS2DQ ymm1, ymm2/m256 * Converts eight packed single-precision floating-point values in the source * operand to eight signed doubleword integers in the destination. * When a conversion is inexact, a truncated (round toward zero) value is * returned. If a converted result is larger than the maximum signed doubleword * integer, the floating-point invalid exception is raised, and if this * exception is masked, the indefinite integer value (80000000H) is returned */ extern __m256i __cdecl _mm256_cvttps_epi32(__m256); /* * Extract packed floating-point values * **** VEXTRACTF128 xmm1/m128, ymm2, imm8 * Extracts 128-bits of packed floating-point values from the source operand * at an 128-bit offset from imm8[0] into the destination */ extern __m128 __cdecl _mm256_extractf128_ps(__m256, const int); extern __m128d __cdecl _mm256_extractf128_pd(__m256d, const int); extern __m128i __cdecl _mm256_extractf128_si256(__m256i, const int); /* * Zero All YMM registers * **** VZEROALL * Zeros contents of all YMM registers */ extern void __cdecl _mm256_zeroall(void); /* * Zero Upper bits of YMM registers * **** VZEROUPPER * Zeros the upper 128 bits of all YMM registers. The lower 128-bits of the * registers (the corresponding XMM registers) are unmodified */ extern void __cdecl _mm256_zeroupper(void); /* * Permute Single-Precision Floating-Point Values * **** VPERMILPS ymm1, ymm2, ymm3/m256 * **** VPERMILPS xmm1, xmm2, xmm3/m128 * Permute Single-Precision Floating-Point values in the first source operand * using 8-bit control fields in the low bytes of corresponding elements the * shuffle control and store results in the destination */ extern __m256 __cdecl _mm256_permutevar_ps(__m256, __m256i); extern __m128 __cdecl _mm_permutevar_ps(__m128, __m128i); /* * Permute Single-Precision Floating-Point Values * **** VPERMILPS ymm1, ymm2/m256, imm8 * **** VPERMILPS xmm1, xmm2/m128, imm8 * Permute Single-Precision Floating-Point values in the first source operand * using four 2-bit control fields in the 8-bit immediate and store results * in the destination */ extern __m256 __cdecl _mm256_permute_ps(__m256, int); extern __m128 __cdecl _mm_permute_ps(__m128, int); /* * Permute Double-Precision Floating-Point Values * **** VPERMILPD ymm1, ymm2, ymm3/m256 * **** VPERMILPD xmm1, xmm2, xmm3/m128 * Permute Double-Precision Floating-Point values in the first source operand * using 8-bit control fields in the low bytes of the second source operand * and store results in the destination */ extern __m256d __cdecl _mm256_permutevar_pd(__m256d, __m256i); extern __m128d __cdecl _mm_permutevar_pd(__m128d, __m128i); /* * Permute Double-Precision Floating-Point Values * **** VPERMILPD ymm1, ymm2/m256, imm8 * **** VPERMILPD xmm1, xmm2/m128, imm8 * Permute Double-Precision Floating-Point values in the first source operand * using two, 1-bit control fields in the low 2 bits of the 8-bit immediate * and store results in the destination */ extern __m256d __cdecl _mm256_permute_pd(__m256d, int); extern __m128d __cdecl _mm_permute_pd(__m128d, int); /* * Permute Floating-Point Values * **** VPERM2F128 ymm1, ymm2, ymm3/m256, imm8 * Permute 128 bit floating-point-containing fields from the first source * operand and second source operand using bits in the 8-bit immediate and * store results in the destination */ extern __m256 __cdecl _mm256_permute2f128_ps(__m256, __m256, int); extern __m256d __cdecl _mm256_permute2f128_pd(__m256d, __m256d, int); extern __m256i __cdecl _mm256_permute2f128_si256(__m256i, __m256i, int); /* * Load with Broadcast * **** VBROADCASTSS ymm1, m32 * **** VBROADCASTSS xmm1, m32 * Load floating point values from the source operand and broadcast to all * elements of the destination */ extern __m256 __cdecl _mm256_broadcast_ss(float const *); extern __m128 __cdecl _mm_broadcast_ss(float const *); /* * Load with Broadcast * **** VBROADCASTSD ymm1, m64 * Load floating point values from the source operand and broadcast to all * elements of the destination */ extern __m256d __cdecl _mm256_broadcast_sd(double const *); /* * Load with Broadcast * **** VBROADCASTF128 ymm1, m128 * Load floating point values from the source operand and broadcast to all * elements of the destination */ extern __m256 __cdecl _mm256_broadcast_ps(__m128 const *); extern __m256d __cdecl _mm256_broadcast_pd(__m128d const *); /* * Insert packed floating-point values * **** VINSERTF128 ymm1, ymm2, xmm3/m128, imm8 * Performs an insertion of 128-bits of packed floating-point values from the * second source operand into an the destination at an 128-bit offset from * imm8[0]. The remaining portions of the destination are written by the * corresponding fields of the first source operand */ extern __m256 __cdecl _mm256_insertf128_ps(__m256, __m128, int); extern __m256d __cdecl _mm256_insertf128_pd(__m256d, __m128d, int); extern __m256i __cdecl _mm256_insertf128_si256(__m256i, __m128i, int); /* * Move Aligned Packed Double-Precision Floating-Point Values * **** VMOVAPD ymm1, m256 * **** VMOVAPD m256, ymm1 * Moves 4 double-precision floating-point values from the source operand to * the destination */ extern __m256d __cdecl _mm256_load_pd(double const *); extern void __cdecl _mm256_store_pd(double *, __m256d); /* * Move Aligned Packed Single-Precision Floating-Point Values * **** VMOVAPS ymm1, m256 * **** VMOVAPS m256, ymm1 * Moves 8 single-precision floating-point values from the source operand to * the destination */ extern __m256 __cdecl _mm256_load_ps(float const *); extern void __cdecl _mm256_store_ps(float *, __m256); /* * Move Unaligned Packed Double-Precision Floating-Point Values * **** VMOVUPD ymm1, m256 * **** VMOVUPD m256, ymm1 * Moves 256 bits of packed double-precision floating-point values from the * source operand to the destination */ extern __m256d __cdecl _mm256_loadu_pd(double const *); extern void __cdecl _mm256_storeu_pd(double *, __m256d); /* * Move Unaligned Packed Single-Precision Floating-Point Values * **** VMOVUPS ymm1, m256 * **** VMOVUPS m256, ymm1 * Moves 256 bits of packed single-precision floating-point values from the * source operand to the destination */ extern __m256 __cdecl _mm256_loadu_ps(float const *); extern void __cdecl _mm256_storeu_ps(float *, __m256); /* * Move Aligned Packed Integer Values * **** VMOVDQA ymm1, m256 * **** VMOVDQA m256, ymm1 * Moves 256 bits of packed integer values from the source operand to the * destination */ extern __m256i __cdecl _mm256_load_si256(__m256i const *); extern void __cdecl _mm256_store_si256(__m256i *, __m256i); /* * Move Unaligned Packed Integer Values * **** VMOVDQU ymm1, m256 * **** VMOVDQU m256, ymm1 * Moves 256 bits of packed integer values from the source operand to the * destination */ extern __m256i __cdecl _mm256_loadu_si256(__m256i const *); extern void __cdecl _mm256_storeu_si256(__m256i *, __m256i); /* * Load Two Unaligned Packed 128-bit Values * Loads two potentially unaligned 128-bit values * and combines them into one 256-bit value. * * The data types here (float const*, double const* and __m128i const*) * were chosen for consistency with the underlying _mm_loadu_{ps,pd,si128} * intrinsics. */ #define _mm256_loadu2_m128(/* float const* */ hiaddr, \ /* float const* */ loaddr) \ _mm256_set_m128(_mm_loadu_ps(hiaddr), _mm_loadu_ps(loaddr)) #define _mm256_loadu2_m128d(/* double const* */ hiaddr, \ /* double const* */ loaddr) \ _mm256_set_m128d(_mm_loadu_pd(hiaddr), _mm_loadu_pd(loaddr)) #define _mm256_loadu2_m128i(/* __m128i const* */ hiaddr, \ /* __m128i const* */ loaddr) \ _mm256_set_m128i(_mm_loadu_si128(hiaddr), _mm_loadu_si128(loaddr)) /* * Store 256-bit Value To Two Unaligned 128-bit Locations * Stores the high and low 128-bit halves of a 256-bit value * to two different potentially unaligned addresses. */ #define _mm256_storeu2_m128(/* float* */ hiaddr, /* float* */ loaddr, \ /* __m256 */ a) \ do { \ __m256 _a = (a); /* reference a only once in macro body */ \ _mm_storeu_ps((loaddr), _mm256_castps256_ps128(_a)); \ _mm_storeu_ps((hiaddr), _mm256_extractf128_ps(_a, 0x1)); \ } while (0) #define _mm256_storeu2_m128d(/* double* */ hiaddr, /* double* */ loaddr, \ /* __m256d */ a) \ do { \ __m256d _a = (a); /* reference a only once in macro body */ \ _mm_storeu_pd((loaddr), _mm256_castpd256_pd128(_a)); \ _mm_storeu_pd((hiaddr), _mm256_extractf128_pd(_a, 0x1)); \ } while (0) #define _mm256_storeu2_m128i(/* __m128i* */ hiaddr, /* __m128i* */ loaddr, \ /* __m256i */ a) \ do { \ __m256i _a = (a); /* reference a only once in macro body */ \ _mm_storeu_si128((loaddr), _mm256_castsi256_si128(_a)); \ _mm_storeu_si128((hiaddr), _mm256_extractf128_si256(_a, 0x1)); \ } while (0) /* * Conditional SIMD Packed Loads and Stores * **** VMASKMOVPD xmm1, xmm2, m128 * **** VMASKMOVPD ymm1, ymm2, m256 * **** VMASKMOVPD m128, xmm1, xmm2 * **** VMASKMOVPD m256, ymm1, ymm2 * * Load forms: * Load packed values from the 128-bit (XMM forms) or 256-bit (YMM forms) * memory location (third operand) into the destination XMM or YMM register * (first operand) using a mask in the first source operand (second operand). * * Store forms: * Stores packed values from the XMM or YMM register in the second source * operand (third operand) into the 128-bit (XMM forms) or 256-bit (YMM forms) * memory location using a mask in first source operand (second operand). * Stores are atomic. */ extern __m256d __cdecl _mm256_maskload_pd(double const *, __m256i); extern void __cdecl _mm256_maskstore_pd(double *, __m256i, __m256d); extern __m128d __cdecl _mm_maskload_pd(double const *, __m128i); extern void __cdecl _mm_maskstore_pd(double *, __m128i, __m128d); /* * Conditional SIMD Packed Loads and Stores * **** VMASKMOVPS xmm1, xmm2, m128 * **** VMASKMOVPS ymm1, ymm2, m256 * **** VMASKMOVPS m128, xmm1, xmm2 * **** VMASKMOVPS m256, ymm1, ymm2 * * Load forms: * Load packed values from the 128-bit (XMM forms) or 256-bit (YMM forms) * memory location (third operand) into the destination XMM or YMM register * (first operand) using a mask in the first source operand (second operand). * * Store forms: * Stores packed values from the XMM or YMM register in the second source * operand (third operand) into the 128-bit (XMM forms) or 256-bit (YMM forms) * memory location using a mask in first source operand (second operand). * Stores are atomic. */ extern __m256 __cdecl _mm256_maskload_ps(float const *, __m256i); extern void __cdecl _mm256_maskstore_ps(float *, __m256i, __m256); extern __m128 __cdecl _mm_maskload_ps(float const *, __m128i); extern void __cdecl _mm_maskstore_ps(float *, __m128i, __m128); /* * Replicate Single-Precision Floating-Point Values * **** VMOVSHDUP ymm1, ymm2/m256 * Duplicates odd-indexed single-precision floating-point values from the * source operand */ extern __m256 __cdecl _mm256_movehdup_ps(__m256); /* * Replicate Single-Precision Floating-Point Values * **** VMOVSLDUP ymm1, ymm2/m256 * Duplicates even-indexed single-precision floating-point values from the * source operand */ extern __m256 __cdecl _mm256_moveldup_ps(__m256); /* * Replicate Double-Precision Floating-Point Values * **** VMOVDDUP ymm1, ymm2/m256 * Duplicates even-indexed double-precision floating-point values from the * source operand */ extern __m256d __cdecl _mm256_movedup_pd(__m256d); /* * Move Unaligned Integer * **** VLDDQU ymm1, m256 * The instruction is functionally similar to VMOVDQU YMM, m256 for loading * from memory. That is: 32 bytes of data starting at an address specified by * the source memory operand are fetched from memory and placed in a * destination */ extern __m256i __cdecl _mm256_lddqu_si256(__m256i const *); /* * Store Packed Integers Using Non-Temporal Hint * **** VMOVNTDQ m256, ymm1 * Moves the packed integers in the source operand to the destination using a * non-temporal hint to prevent caching of the data during the write to memory */ extern void __cdecl _mm256_stream_si256(__m256i *, __m256i); /* * Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint * **** VMOVNTPD m256, ymm1 * Moves the packed double-precision floating-point values in the source * operand to the destination operand using a non-temporal hint to prevent * caching of the data during the write to memory */ extern void __cdecl _mm256_stream_pd(double *, __m256d); /* * Store Packed Single-Precision Floating-Point Values Using Non-Temporal Hint * **** VMOVNTPS m256, ymm1 * Moves the packed single-precision floating-point values in the source * operand to the destination operand using a non-temporal hint to prevent * caching of the data during the write to memory */ extern void __cdecl _mm256_stream_ps(float *, __m256); /* * Compute Approximate Reciprocals of Packed Single-Precision Floating-Point * Values * **** VRCPPS ymm1, ymm2/m256 * Performs an SIMD computation of the approximate reciprocals of the eight * packed single precision floating-point values in the source operand and * stores the packed single-precision floating-point results in the destination */ extern __m256 __cdecl _mm256_rcp_ps(__m256); /* * Compute Approximate Reciprocals of Square Roots of * Packed Single-Precision Floating-point Values * **** VRSQRTPS ymm1, ymm2/m256 * Performs an SIMD computation of the approximate reciprocals of the square * roots of the eight packed single precision floating-point values in the * source operand and stores the packed single-precision floating-point results * in the destination */ extern __m256 __cdecl _mm256_rsqrt_ps(__m256); /* * Square Root of Double-Precision Floating-Point Values * **** VSQRTPD ymm1, ymm2/m256 * Performs an SIMD computation of the square roots of the two or four packed * double-precision floating-point values in the source operand and stores * the packed double-precision floating-point results in the destination */ extern __m256d __cdecl _mm256_sqrt_pd(__m256d); /* * Square Root of Single-Precision Floating-Point Values * **** VSQRTPS ymm1, ymm2/m256 * Performs an SIMD computation of the square roots of the eight packed * single-precision floating-point values in the source operand stores the * packed double-precision floating-point results in the destination */ extern __m256 __cdecl _mm256_sqrt_ps(__m256); /* * Round Packed Double-Precision Floating-Point Values * **** VROUNDPD ymm1,ymm2/m256,imm8 * Round the four Double-Precision Floating-Point Values values in the source * operand by the rounding mode specified in the immediate operand and place * the result in the destination. The rounding process rounds the input to an * integral value and returns the result as a double-precision floating-point * value. The Precision Floating Point Exception is signaled according to the * immediate operand. If any source operand is an SNaN then it will be * converted to a QNaN. */ extern __m256d __cdecl _mm256_round_pd(__m256d, int); #define _mm256_ceil_pd(val) _mm256_round_pd((val), _MM_FROUND_CEIL) #define _mm256_floor_pd(val) _mm256_round_pd((val), _MM_FROUND_FLOOR) /* * Round Packed Single-Precision Floating-Point Values * **** VROUNDPS ymm1,ymm2/m256,imm8 * Round the four single-precision floating-point values values in the source * operand by the rounding mode specified in the immediate operand and place * the result in the destination. The rounding process rounds the input to an * integral value and returns the result as a double-precision floating-point * value. The Precision Floating Point Exception is signaled according to the * immediate operand. If any source operand is an SNaN then it will be * converted to a QNaN. */ extern __m256 __cdecl _mm256_round_ps(__m256, int); #define _mm256_ceil_ps(val) _mm256_round_ps((val), _MM_FROUND_CEIL) #define _mm256_floor_ps(val) _mm256_round_ps((val), _MM_FROUND_FLOOR) /* * Unpack and Interleave High Packed Double-Precision Floating-Point Values * **** VUNPCKHPD ymm1,ymm2,ymm3/m256 * Performs an interleaved unpack of the high double-precision floating-point * values from the first source operand and the second source operand. */ extern __m256d __cdecl _mm256_unpackhi_pd(__m256d, __m256d); /* * Unpack and Interleave High Packed Single-Precision Floating-Point Values * **** VUNPCKHPS ymm1,ymm2,ymm3 * Performs an interleaved unpack of the high single-precision floating-point * values from the first source operand and the second source operand */ extern __m256 __cdecl _mm256_unpackhi_ps(__m256, __m256); /* * Unpack and Interleave Low Packed Double-Precision Floating-Point Values * **** VUNPCKLPD ymm1,ymm2,ymm3/m256 * Performs an interleaved unpack of the low double-precision floating-point * values from the first source operand and the second source operand */ extern __m256d __cdecl _mm256_unpacklo_pd(__m256d, __m256d); /* * Unpack and Interleave Low Packed Single-Precision Floating-Point Values * **** VUNPCKLPS ymm1,ymm2,ymm3 * Performs an interleaved unpack of the low single-precision floating-point * values from the first source operand and the second source operand */ extern __m256 __cdecl _mm256_unpacklo_ps(__m256, __m256); /* * Packed Bit Test * **** VPTEST ymm1, ymm2/m256 * VPTEST set the ZF flag if all bits in the result are 0 of the bitwise AND * of the first source operand and the second source operand. VPTEST sets the * CF flag if all bits in the result are 0 of the bitwise AND of the second * source operand and the logical NOT of the first source operand. */ extern int __cdecl _mm256_testz_si256(__m256i, __m256i); #define _mm256_test_all_zeros(mask, val) \ _mm256_testz_si256((mask), (val)) extern int __cdecl _mm256_testc_si256(__m256i, __m256i); #define _mm256_test_all_ones(val) \ _mm256_testc_si256((val), _mm256_cmpeq_epi32((val),(val))) extern int __cdecl _mm256_testnzc_si256(__m256i, __m256i); #define _mm256_test_mix_ones_zeros(mask, val) \ _mm256_testnzc_si256((mask), (val)) /* * Packed Bit Test * **** VTESTPD ymm1, ymm2/m256 * **** VTESTPD xmm1, xmm2/m128 * VTESTPD performs a bitwise comparison of all the sign bits of the * double-precision elements in the first source operation and corresponding * sign bits in the second source operand. If the AND of the two sets of bits * produces all zeros, the ZF is set else the ZF is clear. If the AND NOT of * the source sign bits with the dest sign bits produces all zeros the CF is * set else the CF is clear */ extern int __cdecl _mm256_testz_pd(__m256d, __m256d); extern int __cdecl _mm256_testc_pd(__m256d, __m256d); extern int __cdecl _mm256_testnzc_pd(__m256d, __m256d); extern int __cdecl _mm_testz_pd(__m128d, __m128d); extern int __cdecl _mm_testc_pd(__m128d, __m128d); extern int __cdecl _mm_testnzc_pd(__m128d, __m128d); /* * Packed Bit Test * **** VTESTPS ymm1, ymm2/m256 * **** VTESTPS xmm1, xmm2/m128 * VTESTPS performs a bitwise comparison of all the sign bits of the packed * single-precision elements in the first source operation and corresponding * sign bits in the second source operand. If the AND of the two sets of bits * produces all zeros, the ZF is set else the ZF is clear. If the AND NOT of * the source sign bits with the dest sign bits produces all zeros the CF is * set else the CF is clear */ extern int __cdecl _mm256_testz_ps(__m256, __m256); extern int __cdecl _mm256_testc_ps(__m256, __m256); extern int __cdecl _mm256_testnzc_ps(__m256, __m256); extern int __cdecl _mm_testz_ps(__m128, __m128); extern int __cdecl _mm_testc_ps(__m128, __m128); extern int __cdecl _mm_testnzc_ps(__m128, __m128); /* * Extract Double-Precision Floating-Point Sign mask * **** VMOVMSKPD r32, ymm2 * Extracts the sign bits from the packed double-precision floating-point * values in the source operand, formats them into a 4-bit mask, and stores * the mask in the destination */ extern int __cdecl _mm256_movemask_pd(__m256d); /* * Extract Single-Precision Floating-Point Sign mask * **** VMOVMSKPS r32, ymm2 * Extracts the sign bits from the packed single-precision floating-point * values in the source operand, formats them into a 8-bit mask, and stores * the mask in the destination */ extern int __cdecl _mm256_movemask_ps(__m256); /* * Return 256-bit vector with all elements set to 0 */ extern __m256d __cdecl _mm256_setzero_pd(void); extern __m256 __cdecl _mm256_setzero_ps(void); extern __m256i __cdecl _mm256_setzero_si256(void); /* * Return 256-bit vector initialized to specified arguments */ extern __m256d __cdecl _mm256_set_pd(double, double, double, double); extern __m256 __cdecl _mm256_set_ps(float, float, float, float, float, float, float, float); extern __m256i __cdecl _mm256_set_epi8(char, char, char, char, char, char, char, char, char, char, char, char, char, char, char, char, char, char, char, char, char, char, char, char, char, char, char, char, char, char, char, char); extern __m256i __cdecl _mm256_set_epi16(short, short, short, short, short, short, short, short, short, short, short, short, short, short, short, short); extern __m256i __cdecl _mm256_set_epi32(int, int, int, int, int, int, int, int); extern __m256i __cdecl _mm256_set_epi64x(__int64, __int64, __int64, __int64); #define _mm256_set_m128(/* __m128 */ hi, /* __m128 */ lo) \ _mm256_insertf128_ps(_mm256_castps128_ps256(lo), (hi), 0x1) #define _mm256_set_m128d(/* __m128d */ hi, /* __m128d */ lo) \ _mm256_insertf128_pd(_mm256_castpd128_pd256(lo), (hi), 0x1) #define _mm256_set_m128i(/* __m128i */ hi, /* __m128i */ lo) \ _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 0x1) extern __m256d __cdecl _mm256_setr_pd(double, double, double, double); extern __m256 __cdecl _mm256_setr_ps(float, float, float, float, float, float, float, float); extern __m256i __cdecl _mm256_setr_epi8(char, char, char, char, char, char, char, char, char, char, char, char, char, char, char, char, char, char, char, char, char, char, char, char, char, char, char, char, char, char, char, char); extern __m256i __cdecl _mm256_setr_epi16(short, short, short, short, short, short, short, short, short, short, short, short, short, short, short, short); extern __m256i __cdecl _mm256_setr_epi32(int, int, int, int, int, int, int, int); extern __m256i __cdecl _mm256_setr_epi64x(__int64, __int64, __int64, __int64); #define _mm256_setr_m128(lo, hi) _mm256_set_m128((hi), (lo)) #define _mm256_setr_m128d(lo, hi) _mm256_set_m128d((hi), (lo)) #define _mm256_setr_m128i(lo, hi) _mm256_set_m128i((hi), (lo)) /* * Return 256-bit vector with all elements initialized to specified scalar */ extern __m256d __cdecl _mm256_set1_pd(double); extern __m256 __cdecl _mm256_set1_ps(float); extern __m256i __cdecl _mm256_set1_epi8(char); extern __m256i __cdecl _mm256_set1_epi16(short); extern __m256i __cdecl _mm256_set1_epi32(int); extern __m256i __cdecl _mm256_set1_epi64x(long long); /* * Support intrinsic functions to do vector type casts. These functions do * not introduce extra moves to generated code. When cast is done from a 128 * to 256-bit type the low 128 bits of the 256-bit result contain source * parameter value; the upper 128 bits of the result are undefined. */ extern __m256 __cdecl _mm256_castpd_ps(__m256d); extern __m256d __cdecl _mm256_castps_pd(__m256); extern __m256i __cdecl _mm256_castps_si256(__m256); extern __m256i __cdecl _mm256_castpd_si256(__m256d); extern __m256 __cdecl _mm256_castsi256_ps(__m256i); extern __m256d __cdecl _mm256_castsi256_pd(__m256i); extern __m128 __cdecl _mm256_castps256_ps128(__m256); extern __m128d __cdecl _mm256_castpd256_pd128(__m256d); extern __m128i __cdecl _mm256_castsi256_si128(__m256i); extern __m256 __cdecl _mm256_castps128_ps256(__m128); extern __m256d __cdecl _mm256_castpd128_pd256(__m128d); extern __m256i __cdecl _mm256_castsi128_si256(__m128i); /* * Support for half-float conversions to/from normal float. * Immediate argument is used for special MXCSR overrides. */ extern __m128 __cdecl _mm_cvtph_ps(__m128i); extern __m256 __cdecl _mm256_cvtph_ps(__m128i); extern __m128i __cdecl _mm_cvtps_ph(__m128 m1, const int imm); extern __m128i __cdecl _mm256_cvtps_ph(__m256, int); /* * Return a vector with all elements set to zero. It is recommended to use the * result of this intrinsic as an input argument to another intrinsic when the * initial value is irrelevant. */ #define _mm_undefined_ps _mm_setzero_ps #define _mm_undefined_pd _mm_setzero_pd #define _mm_undefined_si128 _mm_setzero_si128 #define _mm256_undefined_ps _mm256_setzero_ps #define _mm256_undefined_pd _mm256_setzero_pd #define _mm256_undefined_si256 _mm256_setzero_si256 /* * The list of extended control registers. * Currently, the list includes only one register. */ #define _XCR_XFEATURE_ENABLED_MASK 0 /* Returns the content of the specified extended control register */ extern unsigned __int64 __cdecl _xgetbv(unsigned int); /* Writes the value to the specified extended control register */ extern void __cdecl _xsetbv(unsigned int, unsigned __int64); /* * Performs a full or partial save of the enabled processor state components * using the specified memory address location and a mask. */ extern void __cdecl _xsave(void *, unsigned __int64); #if defined (_M_X64) extern void __cdecl _xsave64(void *, unsigned __int64); #endif /* defined (_M_X64) */ /* * Performs a full or partial save of the enabled processor state components * using the specified memory address location and a mask. * Optimize the state save operation if possible. */ extern void __cdecl _xsaveopt(void *, unsigned __int64); #if defined (_M_X64) extern void __cdecl _xsaveopt64(void *, unsigned __int64); #endif /* defined (_M_X64) */ /* * Performs a full or partial restore of the enabled processor states * using the state information stored in the specified memory address location * and a mask. */ extern void __cdecl _xrstor(void const *, unsigned __int64); #if defined (_M_X64) extern void __cdecl _xrstor64(void const *, unsigned __int64); #endif /* defined (_M_X64) */ /* * Saves the current state of the x87 FPU, MMX technology, XMM, * and MXCSR registers to the specified 512-byte memory location. */ extern void __cdecl _fxsave(void *); #if defined (_M_X64) extern void __cdecl _fxsave64(void *); #endif /* defined (_M_X64) */ /* * Restore the current state of the x87 FPU, MMX technology, XMM, * and MXCSR registers from the specified 512-byte memory location. */ extern void __cdecl _fxrstor(void const *); #if defined (_M_X64) extern void __cdecl _fxrstor64(void const *); #endif /* defined (_M_X64) */ /* * Perform one attempt to generate a hardware generated random value. * The generated value is written to the given memory location and the success * status is returned: 1 if the hardware could generate a valid random number * and 0 otherwise. */ extern int __cdecl _rdrand16_step(unsigned short *); extern int __cdecl _rdrand32_step(unsigned int *); #if defined (_M_X64) extern int __cdecl _rdrand64_step(unsigned __int64 *); #endif /* defined (_M_X64) */ #if defined (_M_X64) /* * Return the value of the FS/GS segment base register. */ extern unsigned int __cdecl _readfsbase_u32(); extern unsigned int __cdecl _readgsbase_u32(); extern unsigned __int64 __cdecl _readfsbase_u64(); extern unsigned __int64 __cdecl _readgsbase_u64(); /* * Write the value to the FS/GS segment base register. */ extern void __cdecl _writefsbase_u32(unsigned int); extern void __cdecl _writegsbase_u32(unsigned int); extern void __cdecl _writefsbase_u64(unsigned __int64); extern void __cdecl _writegsbase_u64(unsigned __int64); #endif /* defined (_M_X64) */ /* * Perform FMA (Fused Multiply-and-Add) operations. */ extern __m128 __cdecl _mm_fmadd_ps(__m128, __m128, __m128); extern __m128d __cdecl _mm_fmadd_pd(__m128d, __m128d, __m128d); extern __m128 __cdecl _mm_fmadd_ss(__m128, __m128, __m128); extern __m128d __cdecl _mm_fmadd_sd(__m128d, __m128d, __m128d); extern __m128 __cdecl _mm_fmsub_ps(__m128, __m128, __m128); extern __m128d __cdecl _mm_fmsub_pd(__m128d, __m128d, __m128d); extern __m128 __cdecl _mm_fmsub_ss(__m128, __m128, __m128); extern __m128d __cdecl _mm_fmsub_sd(__m128d, __m128d, __m128d); extern __m128 __cdecl _mm_fnmadd_ps(__m128, __m128, __m128); extern __m128d __cdecl _mm_fnmadd_pd(__m128d, __m128d, __m128d); extern __m128 __cdecl _mm_fnmadd_ss(__m128, __m128, __m128); extern __m128d __cdecl _mm_fnmadd_sd(__m128d, __m128d, __m128d); extern __m128 __cdecl _mm_fnmsub_ps(__m128, __m128, __m128); extern __m128d __cdecl _mm_fnmsub_pd(__m128d, __m128d, __m128d); extern __m128 __cdecl _mm_fnmsub_ss(__m128, __m128, __m128); extern __m128d __cdecl _mm_fnmsub_sd(__m128d, __m128d, __m128d); extern __m256 __cdecl _mm256_fmadd_ps(__m256, __m256, __m256); extern __m256d __cdecl _mm256_fmadd_pd(__m256d, __m256d, __m256d); extern __m256 __cdecl _mm256_fmsub_ps(__m256, __m256, __m256); extern __m256d __cdecl _mm256_fmsub_pd(__m256d, __m256d, __m256d); extern __m256 __cdecl _mm256_fnmadd_ps(__m256, __m256, __m256); extern __m256d __cdecl _mm256_fnmadd_pd(__m256d, __m256d, __m256d); extern __m256 __cdecl _mm256_fnmsub_ps(__m256, __m256, __m256); extern __m256d __cdecl _mm256_fnmsub_pd(__m256d, __m256d, __m256d); /* * Fused Multiply-and-Add/Subtract__and Multiply-and-Subtract/Add operations. */ extern __m128 __cdecl _mm_fmaddsub_ps(__m128, __m128, __m128); extern __m128d __cdecl _mm_fmaddsub_pd(__m128d, __m128d, __m128d); extern __m128 __cdecl _mm_fmsubadd_ps(__m128, __m128, __m128); extern __m128d __cdecl _mm_fmsubadd_pd(__m128d, __m128d, __m128d); extern __m256 __cdecl _mm256_fmaddsub_ps(__m256, __m256, __m256); extern __m256d __cdecl _mm256_fmaddsub_pd(__m256d, __m256d, __m256d); extern __m256 __cdecl _mm256_fmsubadd_ps(__m256, __m256, __m256); extern __m256d __cdecl _mm256_fmsubadd_pd(__m256d, __m256d, __m256d); /* * Integer 256-bit vector comparison operations. */ extern __m256i __cdecl _mm256_cmpeq_epi8(__m256i, __m256i); extern __m256i __cdecl _mm256_cmpeq_epi16(__m256i, __m256i); extern __m256i __cdecl _mm256_cmpeq_epi32(__m256i, __m256i); extern __m256i __cdecl _mm256_cmpeq_epi64(__m256i, __m256i); extern __m256i __cdecl _mm256_cmpgt_epi8(__m256i, __m256i); extern __m256i __cdecl _mm256_cmpgt_epi16(__m256i, __m256i); extern __m256i __cdecl _mm256_cmpgt_epi32(__m256i, __m256i); extern __m256i __cdecl _mm256_cmpgt_epi64(__m256i, __m256i); /* * Integer 256-bit vector MIN/MAX operations. */ extern __m256i __cdecl _mm256_max_epi8(__m256i, __m256i); extern __m256i __cdecl _mm256_max_epi16(__m256i, __m256i); extern __m256i __cdecl _mm256_max_epi32(__m256i, __m256i); extern __m256i __cdecl _mm256_max_epu8(__m256i, __m256i); extern __m256i __cdecl _mm256_max_epu16(__m256i, __m256i); extern __m256i __cdecl _mm256_max_epu32(__m256i, __m256i); extern __m256i __cdecl _mm256_min_epi8(__m256i, __m256i); extern __m256i __cdecl _mm256_min_epi16(__m256i, __m256i); extern __m256i __cdecl _mm256_min_epi32(__m256i, __m256i); extern __m256i __cdecl _mm256_min_epu8(__m256i, __m256i); extern __m256i __cdecl _mm256_min_epu16(__m256i, __m256i); extern __m256i __cdecl _mm256_min_epu32(__m256i, __m256i); /* * Integer 256-bit vector logical operations. */ extern __m256i __cdecl _mm256_and_si256(__m256i, __m256i); extern __m256i __cdecl _mm256_andnot_si256(__m256i, __m256i); extern __m256i __cdecl _mm256_or_si256(__m256i, __m256i); extern __m256i __cdecl _mm256_xor_si256(__m256i, __m256i); /* * Integer 256-bit vector arithmetic operations. */ extern __m256i __cdecl _mm256_abs_epi8(__m256i); extern __m256i __cdecl _mm256_abs_epi16(__m256i); extern __m256i __cdecl _mm256_abs_epi32(__m256i); extern __m256i __cdecl _mm256_add_epi8(__m256i, __m256i); extern __m256i __cdecl _mm256_add_epi16(__m256i, __m256i); extern __m256i __cdecl _mm256_add_epi32(__m256i, __m256i); extern __m256i __cdecl _mm256_add_epi64(__m256i, __m256i); extern __m256i __cdecl _mm256_adds_epi8(__m256i, __m256i); extern __m256i __cdecl _mm256_adds_epi16(__m256i, __m256i); extern __m256i __cdecl _mm256_adds_epu8(__m256i, __m256i); extern __m256i __cdecl _mm256_adds_epu16(__m256i, __m256i); extern __m256i __cdecl _mm256_sub_epi8(__m256i, __m256i); extern __m256i __cdecl _mm256_sub_epi16(__m256i, __m256i); extern __m256i __cdecl _mm256_sub_epi32(__m256i, __m256i); extern __m256i __cdecl _mm256_sub_epi64(__m256i, __m256i); extern __m256i __cdecl _mm256_subs_epi8(__m256i, __m256i); extern __m256i __cdecl _mm256_subs_epi16(__m256i, __m256i); extern __m256i __cdecl _mm256_subs_epu8(__m256i, __m256i); extern __m256i __cdecl _mm256_subs_epu16(__m256i, __m256i); extern __m256i __cdecl _mm256_avg_epu8(__m256i, __m256i); extern __m256i __cdecl _mm256_avg_epu16(__m256i, __m256i); extern __m256i __cdecl _mm256_hadd_epi16(__m256i, __m256i); extern __m256i __cdecl _mm256_hadd_epi32(__m256i, __m256i); extern __m256i __cdecl _mm256_hadds_epi16(__m256i, __m256i); extern __m256i __cdecl _mm256_hsub_epi16(__m256i, __m256i); extern __m256i __cdecl _mm256_hsub_epi32(__m256i, __m256i); extern __m256i __cdecl _mm256_hsubs_epi16(__m256i, __m256i); extern __m256i __cdecl _mm256_madd_epi16(__m256i, __m256i); extern __m256i __cdecl _mm256_maddubs_epi16(__m256i, __m256i); extern __m256i __cdecl _mm256_mulhi_epi16(__m256i, __m256i); extern __m256i __cdecl _mm256_mulhi_epu16(__m256i, __m256i); extern __m256i __cdecl _mm256_mullo_epi16(__m256i, __m256i); extern __m256i __cdecl _mm256_mullo_epi32(__m256i, __m256i); extern __m256i __cdecl _mm256_mul_epu32(__m256i, __m256i); extern __m256i __cdecl _mm256_mul_epi32(__m256i, __m256i); extern __m256i __cdecl _mm256_sign_epi8(__m256i, __m256i); extern __m256i __cdecl _mm256_sign_epi16(__m256i, __m256i); extern __m256i __cdecl _mm256_sign_epi32(__m256i, __m256i); extern __m256i __cdecl _mm256_mulhrs_epi16(__m256i, __m256i); extern __m256i __cdecl _mm256_sad_epu8(__m256i, __m256i); extern __m256i __cdecl _mm256_mpsadbw_epu8(__m256i, __m256i, const int); /* * Integer 256-bit vector arithmetic/logical shift operations. */ extern __m256i __cdecl _mm256_slli_si256(__m256i, const int); extern __m256i __cdecl _mm256_srli_si256(__m256i, const int); extern __m256i __cdecl _mm256_sll_epi16(__m256i, __m128i); extern __m256i __cdecl _mm256_sll_epi32(__m256i, __m128i); extern __m256i __cdecl _mm256_sll_epi64(__m256i, __m128i); extern __m256i __cdecl _mm256_slli_epi16(__m256i, int); extern __m256i __cdecl _mm256_slli_epi32(__m256i, int); extern __m256i __cdecl _mm256_slli_epi64(__m256i, int); extern __m256i __cdecl _mm256_sllv_epi32(__m256i, __m256i); extern __m256i __cdecl _mm256_sllv_epi64(__m256i, __m256i); extern __m128i __cdecl _mm_sllv_epi32(__m128i, __m128i); extern __m128i __cdecl _mm_sllv_epi64(__m128i, __m128i); extern __m256i __cdecl _mm256_sra_epi16(__m256i, __m128i); extern __m256i __cdecl _mm256_sra_epi32(__m256i, __m128i); extern __m256i __cdecl _mm256_srai_epi16(__m256i, int); extern __m256i __cdecl _mm256_srai_epi32(__m256i, int); extern __m256i __cdecl _mm256_srav_epi32(__m256i, __m256i); extern __m128i __cdecl _mm_srav_epi32(__m128i, __m128i); extern __m256i __cdecl _mm256_srl_epi16(__m256i, __m128i); extern __m256i __cdecl _mm256_srl_epi32(__m256i, __m128i); extern __m256i __cdecl _mm256_srl_epi64(__m256i, __m128i); extern __m256i __cdecl _mm256_srli_epi16(__m256i, int); extern __m256i __cdecl _mm256_srli_epi32(__m256i, int); extern __m256i __cdecl _mm256_srli_epi64(__m256i, int); extern __m256i __cdecl _mm256_srlv_epi32(__m256i, __m256i); extern __m256i __cdecl _mm256_srlv_epi64(__m256i, __m256i); extern __m128i __cdecl _mm_srlv_epi32(__m128i, __m128i); extern __m128i __cdecl _mm_srlv_epi64(__m128i, __m128i); /* * Integer 128/256-bit vector pack/blend/shuffle/insert/extract operations. */ extern __m128i __cdecl _mm_blend_epi32(__m128i, __m128i, const int); extern __m256i __cdecl _mm256_blend_epi32(__m256i,__m256i, const int); extern __m256i __cdecl _mm256_alignr_epi8(__m256i, __m256i, const int); extern __m256i __cdecl _mm256_blendv_epi8(__m256i, __m256i, __m256i); extern __m256i __cdecl _mm256_blend_epi16(__m256i, __m256i, const int); extern __m256i __cdecl _mm256_packs_epi16(__m256i, __m256i); extern __m256i __cdecl _mm256_packs_epi32(__m256i, __m256i); extern __m256i __cdecl _mm256_packus_epi16(__m256i, __m256i); extern __m256i __cdecl _mm256_packus_epi32(__m256i, __m256i); extern __m256i __cdecl _mm256_unpackhi_epi8(__m256i, __m256i); extern __m256i __cdecl _mm256_unpackhi_epi16(__m256i, __m256i); extern __m256i __cdecl _mm256_unpackhi_epi32(__m256i, __m256i); extern __m256i __cdecl _mm256_unpackhi_epi64(__m256i, __m256i); extern __m256i __cdecl _mm256_unpacklo_epi8(__m256i, __m256i); extern __m256i __cdecl _mm256_unpacklo_epi16(__m256i, __m256i); extern __m256i __cdecl _mm256_unpacklo_epi32(__m256i, __m256i); extern __m256i __cdecl _mm256_unpacklo_epi64(__m256i, __m256i); extern __m256i __cdecl _mm256_shuffle_epi8(__m256i, __m256i); extern __m256i __cdecl _mm256_shuffle_epi32(__m256i, const int); extern __m256i __cdecl _mm256_shufflehi_epi16(__m256i, const int); extern __m256i __cdecl _mm256_shufflelo_epi16(__m256i, const int); extern __m128i __cdecl _mm256_extracti128_si256(__m256i, const int); extern __m256i __cdecl _mm256_inserti128_si256(__m256i, __m128i, const int); /* * Scalar to 128/256-bit vector broadcast operations. */ extern __m128 __cdecl _mm_broadcastss_ps(__m128); extern __m128d __cdecl _mm_broadcastsd_pd(__m128d); extern __m128i __cdecl _mm_broadcastb_epi8(__m128i); extern __m128i __cdecl _mm_broadcastw_epi16(__m128i); extern __m128i __cdecl _mm_broadcastd_epi32(__m128i); extern __m128i __cdecl _mm_broadcastq_epi64(__m128i); extern __m256 __cdecl _mm256_broadcastss_ps(__m128); extern __m256d __cdecl _mm256_broadcastsd_pd(__m128d); extern __m256i __cdecl _mm256_broadcastb_epi8(__m128i); extern __m256i __cdecl _mm256_broadcastw_epi16(__m128i); extern __m256i __cdecl _mm256_broadcastd_epi32(__m128i); extern __m256i __cdecl _mm256_broadcastq_epi64(__m128i); extern __m256i __cdecl _mm256_broadcastsi128_si256(__m128i); /* * Integer 256-bit vector signed/unsigned extension operations. */ extern __m256i __cdecl _mm256_cvtepi8_epi16(__m128i); extern __m256i __cdecl _mm256_cvtepi8_epi32(__m128i); extern __m256i __cdecl _mm256_cvtepi8_epi64(__m128i); extern __m256i __cdecl _mm256_cvtepi16_epi32(__m128i); extern __m256i __cdecl _mm256_cvtepi16_epi64(__m128i); extern __m256i __cdecl _mm256_cvtepi32_epi64(__m128i); extern __m256i __cdecl _mm256_cvtepu8_epi16(__m128i); extern __m256i __cdecl _mm256_cvtepu8_epi32(__m128i); extern __m256i __cdecl _mm256_cvtepu8_epi64(__m128i); extern __m256i __cdecl _mm256_cvtepu16_epi32(__m128i); extern __m256i __cdecl _mm256_cvtepu16_epi64(__m128i); extern __m256i __cdecl _mm256_cvtepu32_epi64(__m128i); /* * Returns a 32-bit mask made up of the most significant bit of each byte * of the 256-bit vector source operand. */ extern int __cdecl _mm256_movemask_epi8(__m256i); /* * Masked load/store operations. */ extern __m128i __cdecl _mm_maskload_epi32(int const * /* ptr */, __m128i /* vmask */); extern __m128i __cdecl _mm_maskload_epi64(__int64 const * /* ptr */, __m128i /* vmask */); extern void __cdecl _mm_maskstore_epi32(int * /* ptr */, __m128i /* vmask */, __m128i /* val */); extern void __cdecl _mm_maskstore_epi64(__int64 * /* ptr */, __m128i /* vmask */, __m128i /* val */); extern __m256i __cdecl _mm256_maskload_epi32(int const * /* ptr */, __m256i /* vmask */); extern __m256i __cdecl _mm256_maskload_epi64(__int64 const * /* ptr */, __m256i /* vmask */); extern void __cdecl _mm256_maskstore_epi32(int * /* ptr */, __m256i /* vmask */, __m256i /* val */); extern void __cdecl _mm256_maskstore_epi64(__int64 * /* ptr */, __m256i /* vmask */, __m256i /* val */); /* * Permute elements in vector operations. */ extern __m256i __cdecl _mm256_permutevar8x32_epi32(__m256i, __m256i); extern __m256 __cdecl _mm256_permutevar8x32_ps(__m256, __m256i); extern __m256i __cdecl _mm256_permute4x64_epi64(__m256i, const int); extern __m256d __cdecl _mm256_permute4x64_pd(__m256d, const int); extern __m256i __cdecl _mm256_permute2x128_si256(__m256i, __m256i, const int); /* * Load 32-bytes from memory using non-temporal aligned hint. */ extern __m256i __cdecl _mm256_stream_load_si256(__m256i const *); /* * Masked GATHER from memory to vector register operations. */ extern __m256d __cdecl _mm256_mask_i32gather_pd(__m256d /* old_dst */, double const * /* ptr */, __m128i /* vindex */, __m256d /* vmask */, const int /* scale */); extern __m256 __cdecl _mm256_mask_i32gather_ps(__m256 /* old_dst */, float const * /* ptr */, __m256i /* vindex */, __m256 /* vmask */, const int /* scale */); extern __m256d __cdecl _mm256_mask_i64gather_pd(__m256d /* old_dst */, double const * /* ptr */, __m256i /* vindex */, __m256d /* vmask */, const int /* scale */); extern __m128 __cdecl _mm256_mask_i64gather_ps(__m128 /* old_dst */, float const * /* ptr */, __m256i /* vindex */, __m128 /* vmask */, const int /* scale */); extern __m128d __cdecl _mm_mask_i32gather_pd(__m128d /* old_dst */, double const * /* ptr */, __m128i /* vindex */, __m128d /* vmask */, const int /* scale */); extern __m128 __cdecl _mm_mask_i32gather_ps(__m128 /* old_dst */, float const * /* ptr */, __m128i /* vindex */, __m128 /* vmask */, const int /* scale */); extern __m128d __cdecl _mm_mask_i64gather_pd(__m128d /* old_dst */, double const * /* ptr */, __m128i /* vindex */, __m128d /* vmask */, const int /* scale */); extern __m128 __cdecl _mm_mask_i64gather_ps(__m128 /* old_dst */, float const * /* ptr */, __m128i /* vindex */, __m128 /* vmask */, const int /* scale */); extern __m256i __cdecl _mm256_mask_i32gather_epi32(__m256i /* old_dst */, int const * /* ptr */, __m256i /* vindex */, __m256i /* vmask */, const int /* scale */); extern __m256i __cdecl _mm256_mask_i32gather_epi64(__m256i /* old_dst */, __int64 const * /* ptr */, __m128i /* vindex */, __m256i /* vmask */, const int /* scale */); extern __m128i __cdecl _mm256_mask_i64gather_epi32(__m128i /* old_dst */, int const * /* ptr */, __m256i /* vindex */, __m128i /* vmask */, const int /* scale */); extern __m256i __cdecl _mm256_mask_i64gather_epi64(__m256i /* old_dst */, __int64 const * /* ptr */, __m256i /* vindex */, __m256i /* vmask */, const int /* scale */); extern __m128i __cdecl _mm_mask_i32gather_epi32(__m128i /* old_dst */, int const * /* ptr */, __m128i /* vindex */, __m128i /* vmask */, const int /* scale */); extern __m128i __cdecl _mm_mask_i32gather_epi64(__m128i /* old_dst */, __int64 const * /* ptr */, __m128i /* vindex */, __m128i /* vmask */, const int /* scale */); extern __m128i __cdecl _mm_mask_i64gather_epi32(__m128i /* old_dst */, int const * /* ptr */, __m128i /* vindex */, __m128i /* vmask */, const int /* scale */); extern __m128i __cdecl _mm_mask_i64gather_epi64(__m128i /* old_dst */, __int64 const * /* ptr */, __m128i /* vindex */, __m128i /* vmask */, const int /* scale */); /* * GATHER from memory to vector register operations. */ extern __m256d __cdecl _mm256_i32gather_pd(double const * /* ptr */, __m128i /* vindex */, const int /* index_scale */); extern __m256 __cdecl _mm256_i32gather_ps(float const * /* ptr */, __m256i /* vindex */, const int /* index_scale */); extern __m256d __cdecl _mm256_i64gather_pd(double const * /* ptr */, __m256i /* vindex */, const int /* index_scale */); extern __m128 __cdecl _mm256_i64gather_ps(float const * /* ptr */, __m256i /* vindex */, const int /* index_scale */); extern __m128d __cdecl _mm_i32gather_pd(double const * /* ptr */, __m128i /* vindex */, const int /* index_scale */); extern __m128 __cdecl _mm_i32gather_ps(float const * /* ptr */, __m128i /* vindex */, const int /* index_scale */); extern __m128d __cdecl _mm_i64gather_pd(double const * /* ptr */, __m128i /* vindex */, const int /* index_scale */); extern __m128 __cdecl _mm_i64gather_ps(float const * /* ptr */, __m128i /* vindex */, const int /* index_scale */); extern __m256i __cdecl _mm256_i32gather_epi32(int const * /* ptr */, __m256i /* vindex */, const int /* scale */); extern __m256i __cdecl _mm256_i32gather_epi64(__int64 const * /* ptr */, __m128i /* vindex */, const int /* scale */); extern __m128i __cdecl _mm256_i64gather_epi32(int const * /* ptr */, __m256i /* vindex */, const int /* scale */); extern __m256i __cdecl _mm256_i64gather_epi64(__int64 const * /* ptr */, __m256i /* vindex */, const int /* scale */); extern __m128i __cdecl _mm_i32gather_epi32(int const * /* ptr */, __m128i /* vindex */, const int /* index_scale */); extern __m128i __cdecl _mm_i32gather_epi64(__int64 const * /* ptr */, __m128i /* vindex */, const int /* index_scale */); extern __m128i __cdecl _mm_i64gather_epi32(int const * /* ptr */, __m128i /* vindex */, const int /* index_scale */); extern __m128i __cdecl _mm_i64gather_epi64(__int64 const * /* ptr */, __m128i /* vindex */, const int /* index_scale */); /* * A collection of operations to manipulate integer data at bit-granularity. */ extern unsigned int _bextr_u32(unsigned int /* src */, unsigned int /* start_bit */, unsigned int /* len_in_bits */); extern unsigned int _blsi_u32(unsigned int); extern unsigned int _blsmsk_u32(unsigned int); extern unsigned int _blsr_u32(unsigned int); extern unsigned int _bzhi_u32(unsigned int /* src */, unsigned int /* index */); extern unsigned int _mulx_u32(unsigned int /* src1 */, unsigned int /* src2 */, unsigned int * /* high_bits */); extern unsigned int _pdep_u32(unsigned int /* src */, unsigned int /* mask */); extern unsigned int _pext_u32(unsigned int /* src */, unsigned int /* mask */); extern unsigned int _rorx_u32(unsigned int /* src */, const unsigned int /* shift_count */); extern int _sarx_i32(int /* src */, unsigned int /* shift_count */); extern unsigned int _shlx_u32(unsigned int /* src */, unsigned int /* shift_count */); extern unsigned int _shrx_u32(unsigned int /* src */, unsigned int /* shift_count */); #if defined (_M_X64) extern unsigned __int64 _bextr_u64(unsigned __int64 /* src */, unsigned int /* start_bit */, unsigned int /* len_in_bits */); extern unsigned __int64 _blsi_u64(unsigned __int64); extern unsigned __int64 _blsmsk_u64(unsigned __int64); extern unsigned __int64 _blsr_u64(unsigned __int64); extern unsigned __int64 _bzhi_u64(unsigned __int64 /* src */, unsigned int /* index */); extern unsigned __int64 _mulx_u64(unsigned __int64 /* src1 */, unsigned __int64 /* src2 */, unsigned __int64 * /* high_bits */); extern unsigned __int64 _pdep_u64(unsigned __int64 /* src */, unsigned __int64 /* mask */); extern unsigned __int64 _pext_u64(unsigned __int64 /* src */, unsigned __int64 /* mask */); extern unsigned __int64 _rorx_u64(unsigned __int64 /* src */, const unsigned int /* shift_count */); extern __int64 _sarx_i64(__int64 /* src */, unsigned int /* shift_count */); extern unsigned __int64 _shlx_u64(unsigned __int64 /* src */, unsigned int /* shift_count */); extern unsigned __int64 _shrx_u64(unsigned __int64 /* src */, unsigned int /* shift_count */); #endif /* defined (_M_X64) */ /* * Leading zero bit count. * * Counts the number of leading zero bits in a source operand. * Returns operand size as output when source operand is zero. */ extern unsigned int _lzcnt_u32(unsigned int); #if defined (_M_X64) extern unsigned __int64 _lzcnt_u64(unsigned __int64); #endif /* defined (_M_X64) */ /* * Trailing zero bit count. * * Searches the source operand (r2) for the least significant set bit * (1 bit). If a least significant 1 bit is found, its bit index is * returned, otherwise the result is the number of bits in the operand size. */ extern unsigned int _tzcnt_u32(unsigned int); #if defined (_M_X64) extern unsigned __int64 _tzcnt_u64(unsigned __int64); #endif /* defined (_M_X64) */ /* * Operation targeted to system software that manages processor context IDs. */ extern void __cdecl _invpcid(unsigned int /* type */, void * /* descriptor */); // Hardware Lock Elision extern void _Store_HLERelease(long volatile *,long); extern void _StorePointer_HLERelease(void * volatile *,void *); extern long _InterlockedExchange_HLEAcquire(long volatile *,long); extern long _InterlockedExchange_HLERelease(long volatile *,long); extern void * _InterlockedExchangePointer_HLEAcquire(void *volatile *,void *); extern void * _InterlockedExchangePointer_HLERelease(void *volatile *,void *); extern long _InterlockedCompareExchange_HLEAcquire(long volatile *,long,long); extern long _InterlockedCompareExchange_HLERelease(long volatile *,long,long); extern __int64 _InterlockedCompareExchange64_HLEAcquire(__int64 volatile *,__int64,__int64); extern __int64 _InterlockedCompareExchange64_HLERelease(__int64 volatile *,__int64,__int64); extern void * _InterlockedCompareExchangePointer_HLEAcquire(void *volatile *,void *,void *); extern void * _InterlockedCompareExchangePointer_HLERelease(void *volatile *,void *,void *); extern long _InterlockedExchangeAdd_HLEAcquire(long volatile *,long); extern long _InterlockedExchangeAdd_HLERelease(long volatile *,long); extern long _InterlockedAnd_HLEAcquire(long volatile *,long); extern long _InterlockedAnd_HLERelease(long volatile *,long); extern long _InterlockedOr_HLEAcquire(long volatile *,long); extern long _InterlockedOr_HLERelease(long volatile *,long); extern long _InterlockedXor_HLEAcquire(long volatile *,long); extern long _InterlockedXor_HLERelease(long volatile *,long); extern unsigned char _interlockedbittestandset_HLEAcquire(long *a,long b); extern unsigned char _interlockedbittestandset_HLERelease(long *a,long b); extern unsigned char _interlockedbittestandreset_HLEAcquire(long *a,long b); extern unsigned char _interlockedbittestandreset_HLERelease(long *a,long b); #if defined(_M_X64) extern void _Store64_HLERelease(__int64 volatile *,__int64); extern __int64 _InterlockedExchange64_HLEAcquire(__int64 volatile *,__int64); extern __int64 _InterlockedExchange64_HLERelease(__int64 volatile *,__int64); extern __int64 _InterlockedExchangeAdd64_HLEAcquire(__int64 volatile *,__int64); extern __int64 _InterlockedExchangeAdd64_HLERelease(__int64 volatile *,__int64); extern __int64 _InterlockedAnd64_HLEAcquire(__int64 volatile *,__int64); extern __int64 _InterlockedAnd64_HLERelease(__int64 volatile *,__int64); extern __int64 _InterlockedOr64_HLEAcquire(__int64 volatile *,__int64); extern __int64 _InterlockedOr64_HLERelease(__int64 volatile *,__int64); extern __int64 _InterlockedXor64_HLEAcquire(__int64 volatile *,__int64); extern __int64 _InterlockedXor64_HLERelease(__int64 volatile *,__int64); extern unsigned char _interlockedbittestandset64_HLEAcquire(__int64 *a,__int64 b); extern unsigned char _interlockedbittestandset64_HLERelease(__int64 *a,__int64 b); extern unsigned char _interlockedbittestandreset64_HLEAcquire(__int64 *a,__int64 b); extern unsigned char _interlockedbittestandreset64_HLERelease(__int64 *a,__int64 b); #endif /* defined (_M_X64) */ // Restricted Transactional Memory #define _XBEGIN_STARTED (~0u) #define _XABORT_EXPLICIT (1 << 0) #define _XABORT_RETRY (1 << 1) #define _XABORT_CONFLICT (1 << 2) #define _XABORT_CAPACITY (1 << 3) #define _XABORT_DEBUG (1 << 4) #define _XABORT_NESTED (1 << 5) #define _XABORT_CODE(x) ((unsigned char)(((x) >> 24) & 0xFF)) extern unsigned int __cdecl _xbegin(void); extern void __cdecl _xend(void); extern void __cdecl _xabort(const unsigned int); extern unsigned char __cdecl _xtest(void); /* * Perform one attempt to generate a hardware generated random value * accordingly to the NIST SP 800-90B/C standards. * The generated value is written to the given memory location and the success * status is returned: 1 if the hardware could generate a valid random number * and 0 otherwise. */ extern int __cdecl _rdseed16_step(unsigned short *); extern int __cdecl _rdseed32_step(unsigned int *); extern int __cdecl _rdseed64_step(unsigned __int64 *); /* * The _addcarryx... functions generate ADCX and ADOX instructions which * use CF and OF (in the flags register) respectively to propagate carry. * Because this allows two add-with-carry sequences to be interleaved * without having to save and restore the carry flag this is useful in * multiprecision multiply for example. These functions return * the carry-out, which is convenient for chaining multiple operations. * The sum is written using the given reference. */ extern unsigned char __cdecl _addcarryx_u32(unsigned char /*c_in*/, unsigned int /*src1*/, unsigned int /*src2*/, unsigned int * /*out*/); #if defined(_M_X64) extern unsigned char __cdecl _addcarryx_u64(unsigned char /*c_in*/, unsigned __int64 /*src1*/, unsigned __int64 /*src2*/, unsigned __int64 * /*out*/); #endif /* defined (_M_X64) */ #if defined __cplusplus }; /* End "C" */ #endif /* defined __cplusplus */ #endif /* defined (_M_CEE_PURE) */ #endif /* _INCLUDED_IMM */ #endif /* __midl */